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Preface

This volume contains the proceedings of the 1st International Conference on Web
Reasoning and Rule Systems (RR2007). This conference was special in that it is
the first in a series whose ambitious goal is to be the major forum for discussion
and dissemination of new results on all topics concerning Web reasoning and
rule systems.

The importance of Web reasoning and rule systems has been constantly grow-
ing in the recent years, becoming more and more crucial for the future of the
Web and of information handling. However, discussions on these aspects were,
so far, distributed among a number of different events, lacking a common focus
event. The new RR series fills this gap, and provides such a unified forum, giving
reasoning and rules the first-class role they deserve, and offering the place for
the best research on these topics to be presented, discussed, and advanced.

In its unifying role, RR2007 brought together three previously separate events:
the International Workshop on Principles and Practice of Semantic Web Rea-
soning (PPSWR), the International Conference on Rules and Rule Markup Lan-
guages for the Semantic Web (RuleML), and the International Workshop on
Reasoning on the Web (RoW). Every merge needs effort, but we have to remark
how, in this case, there was an enthusiastic support that made it possible, rather
exceptionally, for this conference to take place as early as this year, whereas
the initial planning was for 2008: this witnesses the big need for such a com-
mon forum, bringing together initially different communities as soon as possible,
overcoming all the timing difficulties for a higher goal.

Starting early had its risks: the short time reflected on a very short announce-
ment and deadline, aggravated by the fact this was a first edition (and as such,
it has yet to build up a success history). Despite all of these difficulties, we were
very pleased to receive more than 60 submissions, which showed that the expec-
tations were justified, and made us confident that the subsequent events in this
series will be even more successful, making RR the unifying forum in the area.
The Program Committee also did an exceptional job, managing to complete the
paper selection in record time, eventually selecting 14 full papers, 15 short pa-
pers, and 7 selected posters. This great selection truly represents the state of the
art in Web reasoning and rule systems.

Finally, we would like to thank all the people who made this possible. The
people from PPSWR (including the REWERSE Executive Committee), from the
RuleML organization, from RoW, from the newly founded RR Steering Com-
mittee, who put their enthusiasm in to making this event live as soon as possible.
The people from the Program Committee and the reviewers, who faced the chal-
lenge of completing the paper selection even within a time-critical situation. The
authors who submitted their works at the conference, believing in a first edition
like this, and in the idea it brings forth. Last but not least, we would like to
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thank Andrei Voronkov, the author of the Easychair system, who made possible
the handling of this conference even within such constrained timing, and Nick
Cercone, the Editor-in-Chief of the International Journal of Knowledge and In-
formation Systems (KAIS), who accepted to have the best papers of RR2007
submitted to a top journal even with RR in its first edition.

April 2007 Massimo Marchiori
Jeff Z. Pan

Christian de Sainte Marie
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Well-Founded Semantics for Hybrid Rules

W�lodzimierz Drabent1,2 and Jan Ma�luszyński2

1 Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, Pl – 01-237 Warszawa, Poland

2 Deptartment of Computer and Information Science,
Linköping University, S – 581 83 Linköping, Sweden

wdr@ida.liu.se, janma@ida.liu.se

Abstract. The problem of integration of rules and ontologies is ad-
dressed in a general framework based on the well-founded semantics of
normal logic programs and inspired by the ideas of Constraint Logic Pro-
gramming (CLP). Hybrid rules are defined as normal clauses extended
with constraints in the bodies. The constraints are formulae in a lan-
guage of a first order theory defined by a set T of axioms. Instances
of the framework are obtained by specifying a language of constraints
and providing T . A hybrid program is a pair (P ,T ) where P is a finite
set of hybrid rules. Thus integration of (non-disjunctive) Datalog with
ontologies formalized in a Description Logic is covered as a special case.

The paper defines a declarative semantics of hybrid programs and
a formal operational semantics. The latter can be seen as an extension
of SLS-resolution and provides a basis for hybrid implementations com-
bining Prolog with constraint solvers. In the restricted case of positive
rules, hybrid programs are formulae of FOL. In that case the declarative
semantics reduces to the standard notion of logical consequence. The
operational semantics is sound and it is complete for a restricted class of
hybrid programs.

1 Introduction

This paper is motivated by the ongoing discussion on the integration of rules
and ontologies (see e.g. [8,14,15,16,13] and references therein), where rules are
usually based on Datalog. Our primary interest is in the hybrid approach, where
existing ontology reasoners and rule reasoners are re-used for reasoning in the
extended rule languages. We present a framework for hybrid integration of ax-
iomatic first-order theories with normal logic programs with well-founded se-
mantics. Integration of Datalog rules with ontologies specified in a Description
Logic is considered as a special instance of the framework. Going beyond Dat-
alog makes it possible to use data structures like lists for programming in the
extended rule language. The choice of the well-founded semantics as the ba-
sis for our approach is motivated by the fact that under this semantics a logic
program has a unique well-founded model and well-established query answering
algorithms. We introduce a notion of hybrid program; such a program is a tu-
ple (P , T ) where T is a set of axioms in a first order language L and P is a

M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 W. Drabent and J. Ma�luszyński

set of hybrid rules. A hybrid rule is a normal clause whose body may include
a formula in L, called the constraint of the rule. We define the declarative se-
mantics of hybrid rules as a natural extension of the well-founded semantics of
logic programs. The operational semantics presented in this paper combines a
variant of SLS-resolution with checking satisfiability of the constraints wrt T ,
which is assumed to be done by a reasoner of T . Thus, it provides a basis for
development of prototypes integrating LP reasoners supporting/approximating
the well-founded semantics (such as XSB Prolog [19]) with constraint solvers.
The operational semantics is sound wrt the declarative one. It is complete for
a restricted class of safe hybrid programs and goals. Generally query answering
in hybrid programs is undecidable, since they include normal logic programs as
a special case. Decidable subclasses of hybrid programs can be defined using
the safeness conditions. In the special case of hybrid rules where the negation
does not appear the rules can be seen as the usual formulae of the FOL, thus
as additional axioms extending T . In that case the declarative semantics of the
hybrid rules defined in this paper is compatible with the semantics of FOL.

The paper is organized as follows. Section 2 gives an (informal) introduction
to well-founded semantics of normal logic programs, and presents the notion of
constraint used in this paper. A simple example of a Datalog program is pre-
sented to illustrate well-founded semantics and its extension to Datalog rules
with ontological constraints. Section 3 gives a formal presentation of the syn-
tax and semantics, both declarative and operational, of the generic language of
hybrid rules, parameterized by the constraint domain. Soundness and complete-
ness results relating the declarative semantics and the operational semantics are
stated. Section 4 includes discussion of related work, and conclusions.

2 Preliminaries

2.1 Normal Logic Programs and the Well-Founded Semantics

The language of hybrid rules will be defined as an extension of normal logic
programs. We assume that the programs are built over a first-order alphabet in-
cluding a set PR of predicates, a set V of variables and a set F of function symbols
including a non-empty finite set of constants. Our main interest is in the case where
the only function symbols are constants. However the presented approach is sound
without this restriction, so it is interesting to present a general case.

Atomic formulae (or atoms) and terms are built in a usual way. A literal is an
atomic formula (positive literal) or a negated atomic formula (negative literal).
A literal (a term) not including variables is called ground.

A normal logic program P is a finite set of rules (called normal clauses) of
the form

H ← B1, ..., Bn where n ≥ 0

where h is an atomic formula, and B1, ..., Bn are literals. The rules with empty
bodies n = 0 are called facts. A normal clause is called definite clause iff all
literals of its body are positive. A definite program is a finite set of definite
clauses.
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In the case where the alphabet of function symbols consists only of constants,
normal logic programs are called Datalog programs.

The Herbrand base HP is the set of all ground atoms built with the predicates,
constants, and function symbols of P . For a subset S ⊆ HP , by ¬S we denote the
set of negations of the elements of S, ¬S = {¬a | a ∈ S }. A ground instance of a
rule r is a rule r′ obtained by replacing each variable of r by a ground term over
the alphabet. The set of all ground instances of the rules of a program P will be
denoted ground(P ). Notice that in the case of Datalog ground(P ) is a finite set
of ground rules. A 3-valued Herbrand interpretation (shortly – interpretation)
I of P is a subset of HP ∪ ¬HP such that for no ground atom A both A and
¬A are in I. Intuitively, the set I assigns the truth value t (true) to all its
members. Thus A is false (has the truth value f) in I iff ¬A ∈ I, and ¬A is
false in I iff A ∈ I. If A �∈ I and ¬A �∈ I then the truth value of A (and that
of ¬A) is u (undefined). An interpretation I is a model of a ground instance
H ← B1, . . . , Bn of a rule iff H is true in I, or H is undefined in I and some Bi

is not true in I, or H is false in I and some Bi is false in I. An interpretation
is a model of a rule H ← B1, . . . , Bn iff it is a model of all its ground instances.

As usual, a 2-valued Herbrand interpretation is a subset of HP . It assigns
the value t to all its elements and the value f to all remaining elements of the
Herbrand universe. It is well known that any definite program P has the least1

2-valued Herbrand model. We will denote it MP . A normal program may not
have the least Herbrand model. The well-founded semantics of logic programs
[18] assigns to every program P a unique (three valued) Herbrand model, called
the well-founded model of P . Intuitively, the facts of a program should be true,
and the ground atoms which are not instances of the head of any rule should
be false. This information can be used to reason which other atoms must be
true and which must be false in any Herbrand model. Such a reasoning gives
in the limit the well-founded model, where the truth values of some atoms may
still be undefined. Well-founded semantics has several equivalent formulations.
We briefly sketch here a definition following that of [11]. It will be extended in
Section 3 to the case of hybrid programs.

For every predicate symbol p we will treat ¬p as a new distinct predicate sym-
bol. A normal program can thus be treated as a definite program over Herbrand
base H ∪ ¬H. A 3-valued interpretation over H can be treated as a 2-valued
interpretation over H ∪¬H.

Let I be such an interpretation. We define two ground, possibly infinite, def-
inite programs P/tI and P/tuI. For a given program P , P/tI is the ground
instantiation of P together with ground facts that show which negative literals
are true in I.

P/tI = ground(P ) ∪ {¬A | ¬A ∈ I }
P/tuI is similar but all the negative literals that are true or undefined in I

are made true here:

P/tuI = ground(P ) ∪ {¬A | A �∈ I, A ∈ H}
1 In the sense of set inclusion.
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Now we define an operator ΨP (I) which produces a new Herbrand interpre-
tation of P :

ΨP (I) = (MP/tI ∩H) ∪ ¬(H \MP/tuI)

This operator is monotonic. Its least fixed point is called the well-founded model
WF (P ) of program P . For some countable ordinal α we have WF (P ) = Ψα

P (∅).
The notation I |=3 F will be used to denote that a formula F is true in a 3-
valued interpretation I. The following example shows a simple Datalog program
and its well-founded model.

Example 1. A two person game consists in moving a token between vertices of a
(finite) directed graph. Each move consists in traversing one edge from the actual
position. Each of the players in order makes one move. The graph is described
by a Datalog database of facts m(X, Y ) corresponding to the edges of the graph.
A position X is said to be a winning position X if there exists a move from X
to a position Y which is a losing (non-winning) position:

w(X) ← m(X, Y ),¬w(Y )

Consider the graph
d → e
↑ ↓

b ↔ a → c → f

and assume that it is encoded by the facts m(b, a), m(a, b), . . . , m(e, f) of the
program. The winning positions are e, c. The losing positions are d, f . Position
a is not a losing position since the player has an option of moving to b from
which the partner can only return to a. This intuition is properly reflected by
the well-founded model of the program, it contains the following literals with
the predicate symbol w: w(c), w(e),¬w(d),¬w(f).

2.2 External Theories

This section discusses logical theories to be integrated with logic programs.

Constraints. Our objective is to define a general framework for extending nor-
mal logic programs, which, among others, can also be used for integration of
Datalog rules with ontologies. Syntactically, the clauses of a logic program are
extended by adding formulae (called constraints) of a certain logical theory. We
use this term due to similarities with constraint logic programming [12]. We will
consider an external 2-valued theory, also called constraint theory. The function
symbols and the variables of the language of the constraint theory are the same
as those of the language of rules, but the predicate alphabets of both languages
(denoted PC and PR) are disjoint. The predicates are called, respectively, con-
straint predicates and rule predicates. We assume that the constraint theory is
given by a set of axioms T . Formally, the theory is the set of logical consequences
of T . We will however often use T as the name of the theory.
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Constraints are distinguished formulae in the language of the constraint the-
ory. The set of constraints is closed under conjunction, disjunction, negation and
existential quantification. We assume that PC contains the equality symbol =
and T includes axioms of syntactic equality, known as CET (Clark’s equality
theory) [3]. CET implies that any different ground terms have different values
in any model of T . The latter property, reduced to constants, is called unique
name assumption. Informally, each function symbol is treated as a constructor.

The requirement on equality in T may seem too restrictive. However such
requirement appears in most of CLP implementations and is not found incon-
venient in practice. When one needs functions not satisfying CET (eg. 2+4 and
4 denoting the same number) one introduces another equality predicate =′ (eg.
numerical equality of CLP(FD) ). Formally, =′ is an equivalence relation. It is
a congruence of the relevant constraint predicates (eg. of numerical predicates
of CLP(FD) ). Informally, these predicates do not distinguish equivalent values.
The intuition is that we deal both with the Herbrand interpretation and with a
non Herbrand one. We may treat arguments of certain constraint predicates as
interpreted by the latter interpretation, and the arguments of the other predi-
cates as interpreted by the Herbrand interpretation. In particular, the Herbrand
interpretation applies to rule predicates.

Ontologies and Ontological Constraints. An important special case of ex-
ternal theories consists of ontologies formalized in Description Logics (DL’s) (see
e.g. [2]). The syntax of a DL is built over distinct alphabets of class names(also
known as concepts), property names (also known as roles) and individual names.
Depending on the kind of DL, different constructors are provided to build class
expressions (or briefly classes) and property expressions (or briefly properties).
Intuitively, classes are used to represent sets of individuals of a domain and
properties are used to represent binary relations over individuals. Individual
names are used to represent individuals of a domain and can be seen as logical
constants. Following the assumption about T we consider DL’s where different
names represent different individuals of the domain (unique name assumption).

By an ontology we mean a finite set of DL axioms of the form: A := C
(concept definition), C � D (concept inclusion), R := S (role definition), R � S
(role inclusion), C(a) (concept assertion) and R(a, b) (role assertion), where A
is an atomic concept, C, D arbitrary concepts, R, S roles and a, b individuals.
An ontology is thus a DL knowledge base in which one can distinguish two
different kinds of axioms: a T-Box (terminology) consisting of concept (resp.
role) definitions and inclusions; and an A-Box (assertions) describing concept
(resp. role) assertions relating to individuals.

Class expressions, property expressions and axioms can be seen as an alter-
native representation of FOL formulae. Thus, the semantics of DL’s is defined
by referring to the usual notions of interpretation and model.

Due to the restricted syntax, DL’s are decidable. There exist well developed
automatic reasoning techniques. Some DL’s also support reasoning with concrete
data types, such as strings or integers. In that case one distinguishes between
individual-valued properties and data-valued properties.
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Given an ontology T in a DL one can use a respective reasoner for checking
if a formula C is a logical consequence of T . If T �|= C and T �|= ¬C then C is
true in some models of the ontology and false in some other models. However,
generally the syntax of DL’s puts restriction on the use of negation: classes are
closed under complement (negation) but the properties are not. So the language
of ontological constraints is to be defined with care if the constraints are to be
closed under negation, as required in Section 2.2.

Example 2. Consider a classification of geographical locations. For example the
classification may concern the country (Finland (Fi), Norway (No), etc.), the
continent (Europe (E), etc.), and possibly other categories. We specify a clas-
sification by axioms in a DL logic. The ontology provides, among others, the
following information

– subclass relations (T-box axioms): e.g. (Fi � E);
– classification of some given locations represented by constants (A-box ax-

ioms). For instance, assuming that the positions of Example 1 represent
locations we may have: b is a location in Finland (Fi(b)), c is a location in
Europe (E(c)).

2.3 Datalog with Constraints: An Example

We now illustrate the idea of adding constraints to rule bodies on a simple ex-
ample. The intention is to give an informal introduction to the formal definitions
of Section 3.

Example 3. We now describe a variant of the game Example 1 where the rules
are subject of additional restrictions. Assume that the positions of the graph
represent geographical locations described by the ontology of Example 2. The
restrictions will be expressed as ontological constraints added in rule bodies. For
instance the facts m(e, f) and m(c, f) of Example 1 can be modified, respectively,
to m(e, f) ← E(f) and to m(c, f) ← ¬Fi(f). Intuitively, this would mean that
the move from e to f is allowed only if f is in Europe and the move from c to f
– only if f is not in Finland. These restrictions may influence the outcome of the
game: f will still be a losing position but if the axioms of the ontology do not
allow to conclude that f is in Europe, we cannot conclude that e is a winning
position. However, we can conclude that if f is not in Europe then it cannot be
in Finland. Thus, at least one of the conditions E(f),¬Fi(f) holds. Therefore c
is a winning position: If E(f) then, as in Example 1, e is a winning position, d
is a losing one, hence c is a winning position. On the other hand, if ¬Fi(f) the
move from c to f is allowed in which case c is a winning position. This intuitive
explanation gives an informal introduction to the formal semantics discussed in
Section 3.

3 Hybrid Integration of Rules and External Theories

This section defines the syntax and the semantics (both declarative and
operational) of hybrid programs, integrating normal rules with axiomatically
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defined first-order theories. The general principles discussed here apply in a
special case to integration of Datalog with ontologies specified in Description
Logics.

3.1 The Syntax

We consider a first-order alphabet including, as usual, disjoint alphabets of pred-
icate symbols P , function symbols F (including a non-empty set of constants)
and variables V . We assume that P consists of two disjoint sets PR (rule pred-
icates) and PC (constraint predicates). The atoms and the literals constructed
with these predicates will respectively be called rule atoms (rule literals) and con-
straint atoms (constraint literals). We will combine rules over alphabets PR, F, V
with constraints over alphabets PC , F, V .

Definition 1. A hybrid rule (over PR, PC , F, V ) is an expression of the form:

H ← C, L1, . . . , Ln

where, n ≥ 0 each Li is a rule literal and C is a constraint (over PC , F, V ); C
is called the constraint of the rule.

A hybrid program is a pair (P , T ) where P is a set of hybrid rules and T is a
set of axioms over PC , F, V . �

We adopt the convention that a constraint true, which is a logical constant
interpreted as t, is omitted. Notation L will be used to denote a sequence of rule
literals (similarly t a sequence of terms, etc.); t = u will denote a conjunction of
equalities t1 = u1, . . . , tk = uk. Hybrid rules are illustrated in Example 3.

3.2 The Declarative Semantics

The declarative semantics of hybrid programs is defined as a generalization of
the well-founded semantics of normal programs; it refers to the models of the
external theory T of a hybrid program. Given a hybrid program (P , T ) we cannot
define a unique well-founded model of P since we have to take into consideration
the logical values of the constraints in the rules. However, a unique well-founded
model can be defined for any given model of T . Roughly speaking, the constraints
in the rules are replaced by their values in the model; then the well-founded
model of the obtained logic program is taken. The well-founded models are over
the Herbrand universe, but the models of T are arbitrary.

By a ground instance of a hybrid rule H ← C, L1, . . . , Ln we mean any rule
Hθ ← Cθ, L1θ, . . . , Lnθ where θ is a substitution replacing the variables of
H, L1, . . . , Ln by ground terms. Here Cθ means applying θ to the free variables
of C. (So Cθ is not ground if it contains a bound variable or a free variable
not occurring in H, L1, . . . , Ln.) By ground(P) we denote the set of all ground
instances of the hybrid rules in P .

Definition 2. Let (P , T ) be a hybrid program and let M0 be a model of T . Let
P/M0 be the normal program obtained from ground(P) by
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– removing each rule constraint C which is satisfiable in M0 (i.e. M0 |= ∃C),
– removing each rule whose constraint C is unsatisfiable in M0.

The well-founded model of P/M0 is called the well-founded model of P based on
M0. A formula F holds in the well-founded semantics of a hybrid program (P, T )
(denoted (P, T ) |=wf F iff M |=3 F for each well-founded model M of (P, T ). �

Example 4. For the hybrid program (P , T ) of Example 3 we have to consider
models of the ontology T . For every model M0 of T such that M0 |= E(f)
the program P/M0 includes the fact m(e, f). The well-founded model of P/M0

includes thus the literals ¬w(f), w(e),¬w(d), w(c) (independently of whether
M0 |= Fi(f)).

On the other hand, for every model M1 of the ontology such that M1 |=
¬Fi(f) the program P/M1 includes the fact m(c, f). The well-founded model
of P/M0 includes thus the literals ¬w(f), w(c) (independently of whether M0 |=
E(f) ).

Notice, that each of the models of the ontology falls in one of the above
discussed cases. Thus, w(c) and ¬w(f) hold in the well-founded semantics of the
hybrid program, while w(e),¬w(e), w(d) and ¬w(d) do not hold in it (provided
that M |= E(f) does not hold in every model M of T ).

As the well-founded semantics of normal programs is undecidable, so is the well-
founded semantics of hybrid programs.

3.3 The Operational Semantics

The operational semantics is based on the constructive negation approach pre-
sented in [5,6].

We will consider goals of the form C, L1, . . . , Ln, (n ≥ 0) where each Li is a
rule literal and C is a constraint. By the restriction F |V of a formula F to a
set of variables V we mean the formula ∃x1, . . . , xnF where x1, . . . , xn are those
free variables of F that are not in V . By F |F ′ we mean F |V , where V are the
free variables of F ′.

Consider a goal G = C, L, p(t), L′ and a rule R = p(u) ← C′, K, such that no
variable occurs both in G and R. We say that the goal

G′ = t = u, C, C′, L, K, L′

is derived from G by R, with the selected atom p(t), if t=u, C, C′ is satisfiable.
We inductively define two kinds of derivation trees: t-trees and tu-trees. In-

formally, their role is to find out when a given goal is t, or respectively when it
is t or u. An answer C of a t-tree with the root G means that if C holds then G
is t (in the well-founded models of the program). On the other hand, if G is t
or u under some variable valuation ν then in a tu-tree for G there exists a leaf
C which is true under ν.

For correctness of the definition we use the standard notion of a rank. In the
general case ranks are countable ordinals, but for a language where the function
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symbols are constants natural numbers are sufficient. The children of nodes
with an atom selected are defined as in the standard SLD-resolution. The only
difference is that instead of explicit unification we employ equality constraints.
The children of nodes with a negative literal selected are constructed employing
the results of tu- (t-) trees of lower rank. A t-tree refers to tu-trees and vice versa.
This is basically just a simplification of the corresponding definitions of [5,6].

Definition 3 (Operational semantics). A t-tree (tu-tree) of rank k ≥ 0 for
a goal G w.r.t. a program (P , T ) satisfies the following conditions. The nodes of
the tree are (labelled by) goals. In each node a rule literal is selected, if such a
literal exists. A node containing no rule literal is called successful, a branch of
the tree with a successful leaf is also called successful.

1. A constraint (C1 ∨ · · · ∨ Cn)|G (n ≥ 0)2 is an answer of the t-tree if
C1, . . . , Cn are (some of the) successful leaves of the t-tree. (It is not re-
quired that all the successful leaves are taken.)

2. By a cross-section (or frontier) of a tu-tree we mean a set F of tree nodes
such that each successful branch of the tree has a node in F . Let F be a
cross-section of the tu-tree and CF = {C1, . . . } the constraints of the nodes
in F .

If CF = {C1, . . . , Cn } is finite then the constraint ¬(C1|G), . . . ,¬(Cn|G)
(the negation of

∨
(Ci|G)) is called a negative answer of the tu-tree.

If CF is infinite then a constraint C which implies ¬(Ci|G) for each Ci ∈
CF is called a negative answer of the tu-tree. Moreover it is required that
each free variable of C is a free variable of G.

3. If (in the t-tree or tu-tree) the selected literal A in a node G′ is an atom then,
for each rule R of P , a goal derived from G′ with A selected by a variant R′

of R is a child of G′, provided such a goal exists. Moreover it is required that
no variable in R′ occurs in the tree on the path from the root to G′.

4. Consider a node G′ = C, L,¬A, L′ of the t-tree (tu-tree), in which the selected
literal ¬A is negative. The node is a leaf or has one child, under the following
conditions.
(a) If the tree is a t-tree then

i. G′ is a leaf, or
ii. G′ has a child C′, C, L, L′, where C′ is a negative answer of a tu-tree

for C, A of rank < k, and C′, C is satisfiable.
(b) If the tree is a tu-tree then

i. G′ has a child C, L, L′, or
ii. G′ has a child C′, C, L, L′, where C′ = ¬C′′ is the negation of an

answer C′′ of a t-tree for C, A of rank < k, and C′, C is satisfiable,
or

iii. G′ is a leaf and there exists an answer C′′ of a t-tree for C, A of rank
< k such that ¬C′′, C is unsatisfiable.

2 If n = 0 then by C1 ∨ · · · ∨ Cn we mean false, and by C1 ∧ · · · ∧ Cn we mean true.
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An informal explanation for case 2 is that the constraints of the cross-section
include all the cases in which G is t or u, thus their negation implies that G
is f . Notice that if C is the negative answer considered in case 2 then C, Ci is
unsatisfiable for any Ci ∈ CF . Hence C, C′ is unsatisfiable for any constraint C′

which is a leaf of the tu-tree (as C′ is of the form Ci, C
′′, where Ci ∈ CF ).

An informal explanation for case 4 is that in a t-tree C′ implies that A is f ,
equivalently ¬A is t. In a tu-tree ¬C′′ includes all the cases in which C, A is not
t, and C, A being not t is equivalent to ¬(C, A) being t or u.

Notice that in case 4 the node G′ = C, L,¬A, L′ may unconditionally be a
leaf of a t-tree (of any rank). This corresponds to the fact that C′ = ¬C is a
negative answer for any tu-tree for C, A. (Take the cross-section {C, A }). Hence
the constraint ¬C, C in the supposed child of G′ is unsatisfiable. Conversely, G′

in a tu-tree may have C, L, L′ as the child. This corresponds to the fact that
C′′ = false is an answer of any t-tree. Hence C is equivalent to ¬C′′, C (which
is the constraint obtained in 4(b)ii).

Example 5. Consider a query w(c) for the hybrid program of Example 3. It can
be answered by the operational semantics by construction of the following trees.
(Sometimes we replace a constraint by an equivalent one.)

1. A t-tree for w(c):

w(c)
|

X = c, m(X, Y ),¬w(Y )
/ \

X = c, Y = f,¬Fi(f),¬w(Y ) X = c, Y = d,¬w(Y )
| |

X = c, Y = f,¬Fi(f) X = c, Y = d,¬(X = c, Y = d, E(f))

The tree refers to negative answers derived in the cases 2, 4 below. The
answer obtained from the two leaves of the tree is ¬Fi(f)∨E(f). As this is
a logical consequence of the ontology, w(c) holds in each well-founded model
of the program.

2. A tu-tree for Y = d, w(Y ), employing an answer from the t-tree from case 3:

Y = d, w(Y )
|

Y = d, X ′ = Y, m(X ′, Y ′),¬w(Y ′)
|

Y = d, X ′ = Y, Y ′ = e,¬w(Y ′)
|

Y = d, X ′ = Y, Y ′ = e,¬(Y = d, X ′ = Y, Y ′ = e, E(f))

The negative answer (obtained from the cross-section containing the leaf)
is ¬∃X ′, Y ′

(
Y = d, X ′ = Y, Y ′ = e,¬(Y = d, X ′ = Y, Y ′ = e, E(f))

)
which is

equivalent to ¬(Y =d,¬E(f)). Similarly, if a constraint C, Y =d is satisfiable
then ¬(C, Y =d,¬E(f)) is a negative answer of a tu-tree for C, Y =d, w(Y ).
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3. A t-tree for Y ′ = e, w(Y ′) employing a negative answer from case 4:

Y ′ = e, w(Y ′)
|

Y ′ = e, X ′′ = Y ′, m(X ′′, Y ′′),¬w(Y ′′)
|

Y ′ = e, X ′′ = Y ′, Y ′′ = f, E(Y ′′),¬w(Y ′′)
|

Y ′ = e, X ′′ = Y ′, Y ′′ = f, E(Y ′′)

The corresponding answer is (equivalent to) Y ′ = e, E(f). Similarly, any
satisfiable constraint C, Y ′ = e, E(f) is an answer for C, Y ′ = e, w(Y ′).

4. A tu-tree for Y = f, w(Y ):

Y = f, w(Y )
|

Y = f, Y = X ′, m(X ′, Y ′),¬w(Y ′)

From the empty cross-section a negative answer true is obtained. Simi-
larly, true is a negative answer for C, Y = f, w(Y ), where C is an arbitrary
constraint.

3.4 Soundness and Completeness

Now we show that the operational semantics from the previous section is sound,
and under certain conditions, complete. Due to lack of space we omit the actual
proofs.

By a grounding substitution for the variables of a formula F (or just “for F”)
we mean a substitution replacing the free variables of F by ground terms. Notice
that this differs from substitutions used to define ground(P).

Theorem 1 (Soundness). Consider a program (P , T ) and a model M0 of T
1. If C is an answer of a t-tree of rank k for G then for any grounding

substitution θ (for the variables of G) M0 |= Cθ implies Ψk
P/M0

(∅) |=3 Gθ.
2. If C is a negative answer of a tu-tree of rank k for G then for any grounding

substitution θ (for the variables of G) M0 |= Cθ implies Ψk
P/M0

(∅) |=3 ¬Gθ.

Intuitively the soundness result shows that for any model M0 of the external
theory the answers (the negative answers) obtained by construction of a t-tree
(of a tu-tree) are correct in the well-founded model of the program which is
based on M0.

Generally t-trees and tu-trees may have infinite branches and infinite cross-
sections, resulting in infinite sets of constraints. In that case there is no effective
way of finding a negative answer of the tu-tree. Thus the operational semantics
is not complete.

Our operational semantics turns out to be complete for the case where the pro-
gram and goals are safe in the sense defined below and the alphabet does not con-
tain function symbols of arity > 0, in other words the Herbrand universe is finite.
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A rule R = H ← C1, . . . , Cl, L, where C1, . . . , Cl is the constraint of R, is
safe if

– each variable of H ,
– each variable of a negative literal of L, and
– each free variable of C1, . . . , Cl

is bound in C1, . . . , Cl to a constant or to a variable appearing in a positive
literal in L. A variable x0 is bound in C1, . . . , Cl to a variable xn (respectively to
a constant c) if the set {C1, . . . , Cl} contains equalities x0 = x1, . . . , xn−1 = xn

(resp. x0 = x1, . . . , xn−1 = xn, xn = c), where n ≥ 0. (We do not distinguish here
equivalent equalities, like x = y and y = x.) Notice that x0 is bound to itself
independently of the constraint.

A hybrid program is safe if all its rules are safe. A goal G = C1, . . . , Cl, L is
safe if the rule p ← G is safe (where p is a 0-argument predicate symbol). It can
be proved that if the root of a t-tree (tu-tree) for a safe program is safe then any
node of the tree is safe.

Intuitively, safeness guarantees that in a node of a tree that does not include
positive literals all free variables of its constraints and all variables of the negative
literals are bound to constants of the program. For safe programs we have the
following completeness result.

Theorem 2 (Completeness). Assume that the Herbrand universe is finite.
Consider a safe program (P , T ) and a model M0 of T . Let R be a selection rule,
G be a safe goal, and C0 be the constraint of G. Let k ≥ 0 and θ be a grounding
substitution for the variables of G such that C0θ is satisfiable.

1. If Ψk
P/M0

(∅) |=3 Gθ then there exists a t-tree for G via R with an answer C

such that M0 |= Cθ.
2. If Ψk

P/M0
(∅) |=3 ¬Gθ then there exists a tu-tree for G via R with a negative

answer C such that M0 |= Cθ.

4 Conclusions and Related Work

We presented a generic scheme for integration of normal logic programs with
axiomatically defined external theories. For every instance of the scheme the
declarative semantics is defined by combining the well-founded semantics of nor-
mal programs with the logical semantics of the axioms of the external theory. In
the special case of a positive logic programs the hybrid rules become formulae of
FOL and the declarative semantics reduces to their logical semantics. We defined
an operational semantics which opens for re-use of existing rule reasoners and
constraint solvers for implementation of sound reasoners for hybrid programs.
The operational semantics is based on the constructive negation of [5,6] (an ex-
tension of SLS-resolution, for references see e.g. the survey [1]) combined with
the ideas of Constraint Logic Programming [12]. We proved the soundness of
the operational semantics in general and its completeness for safe hybrid rules
based on Datalog and safe goals. A way of implementing the proposed approach,
combining XSB Prolog with any DIG compatible reasoner is presented in [7].
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Our work addresses integration of rules and ontologies as a special case of the
problem of integration normal logic programs with external theories. The related
work on integration of rules and ontologies is instead focused on integration of
various variants of Datalog with Description Logics. Below we discuss only those
approaches to integration of rules and ontologies which in our opinion are more
closely related to our work. This is not intended as a survey of all work done on
this topic.

Our work is strongly motivated by the early AL-log approach [4] where posi-
tive Datalog was extended by allowing the concepts of ALC DL as constraints in
safe Datalog rules, thus restricting the Herbrand model of the underlying Datalog
program. The operational semantics of AL-log relies on an extension of SLD-
resolution where the disjunction of constraints from different derivations is to be
submitted for validity check to the DL-reasoner. We adopted the AL-log idea of
extending rules with constraints in the body and applied it to more expressive
rules including non-monotonic negation and to more expressive constraints than
those used in AL-log.

In our approach the heads of the hybrid rules are atoms built with rule pred-
icates. Thus the semantics of the rule predicates depends on the external theory
which is assumed to be given a priori and to not depend on the rules. The ratio-
nale for that is that the rules describe a specific application while the theory (for
example an ontology) provides a knowledge common for an application domain.
In contrast to that, several recent papers [14,15,16,17] allow the use of ontology
predicates in the heads of rules, defining thus an integrated language where rule
predicates and ontology predicates may be mutually dependent, and ontology
predicates can be (re-)defined by rules.

The paper [14] defines DL rules, a decidable combination of disjunctive Dat-
alog not allowing a non-monotonic negation, with OWL-DL. In contrast to that
our primary concern is non-monotonic reasoning.

The r-hybrid knowledge bases [15] and the more recent DL+log [16,17] are
based on disjunctive Datalog with non-monotonic negation under the stable
model semantics. The objective is to define a generic integration scheme of this
variant of Datalog with an arbitrary Description Logic. The DL-rules defined
under this scheme may include DL predicates not only in their bodies but also in
the heads. A hybrid DL+log knowledge base consists of a DL knowledge base K
and a set of hybrid rules P . A notion of model of such a knowledge base is defined
by referring to the models of K and to the stable models of disjunctive Datalog.
This is similar to our definition of declarative semantics in that that models of
K are used to transform the set of grounded hybrid rules into a set of ground
Datalog rules, not including DL-atoms. However, as the heads of the hybrid
rules may include DL-atoms, the transformation is more elaborate than our
P/M0 transformation. Also the semantics of DL+log is based on stable models
of the transformed ground rules, while our semantics is based on the well-founded
semantics of P/M0. Last but not least, we adopt the unique name assumption,
while in DL+log the notion of stable model is modified so that unique names
need not be assumed. In this modification the interpretation of constants must
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be considered in the definition of stable model. No implementation of DL+log
has been presented in [16,17]. The discussed general reasoning algorithm relies on
guessing a partition of a set of Boolean conjunctive queries obtained by (partial)
grounding of DL-atoms that occur in the program.

An important objective of our work has been to facilitate re-use of existing
rule reasoners and constraint solvers for reasoning with hybrid rules. A similar
objective has been achieved in the project “Answer Set Programming for the
Semantic Web”[8]. The language of Description Logic Programs (DLP’s), defined
in this project, allows for integration of ontologies defined in OWL DL with
Datalog rules with negation by extending the latter with so called dl-queries to
a given ontology. The queries may locally modify the ontology. Two kinds of
declarative semantics are considered for the integrated language. The semantics
of choice [9] extends the stable model semantics of Datalog with negation, but an
extension of the well-founded semantics is also considered [10]. In both variants
of the declarative semantics the truth value of a rule wrt to an interpretation
depends on dl-queries in the rule being logical consequences of the respective
ontologies. This makes the semantics incompatible with the standard semantics
of the first order logic. For example consider two dl-queries Q1, Q2 such that
in each model of the ontology at least one of them is true, but none of them
is a logical consequence of the ontology. Add the rules p ← Q1 and p ← Q2,
which can be seen as axioms in FOL. Then p is a logical consequence of the
ontology and rules, but will not follow from the declarative semantics of DLP.
In contrast to that our approach is compatible with FOL. For achieving this
our operational semantics requires storing of constraints which makes possible
reasoning by cases. In contrast to DLP our integration scheme does not provide
a possibility of modifying the external theory by rule constraints.
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Abstract. Reactive Web systems, Web services, and Web-based pub-
lish/subscribe systems communicate events as XML messages, and in
many cases require composite event detection: it is not sufficient to react
to single event messages, but events have to be considered in relation to
other events that are received over time.

Emphasizing language design and formal semantics, we describe the
rule-based query language XChangeEQ for detecting composite events.
XChangeEQ is designed to completely cover and integrate the four com-
plementary querying dimensions: event data, event composition, tem-
poral relationships, and event accumulation. Semantics are provided as
model and fixpoint theories; while this is an established approach for rule
languages, it has not been applied for event queries before.

1 Introduction

Emerging Web technologies such as reactive Web systems [9,4,7,23], Web-based
publish/subscribe systems [25,15], and Web services communicate by exchanging
messages. These messages usually come in an XML format such as SOAP [20] or
Common Base Event (CBE) [14] and signify some application-level event, e.g.,
an update on a Web document, publication of new information, a request for
some service, or a response to a request.

For many applications it is not sufficient to query and react to only single,
atomic events, i.e., events signified by a single message. Instead, events have to
be considered with their relationship to other events in a stream of events. Such
events (or situations) that do not consist of one single atomic event but have to
be inferred from some pattern of several events are called composite events.

Examples for such composite events are omnipresent. An application for stu-
dent administration might require notification when “a student has both handed
in her thesis and given the defense talk.” A library application might send a mo-
nition when “a book has been borrowed and not returned or extended within one
month.” A stock market application might require notification if “the average of
the reported stock prices over the last hour raises by 5%.”

This article describes work on the rule-based high-level event query language
XChangeEQ for the Web, focusing on language design and formal semantics.
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XChangeEQ has been introduced in [3]; we extend on this work by providing for-
mal semantics in the form of model and fixpoint theories for stratified programs.
XChangeEQ is developed as a part (sub-language) of the reactive, rule-based Web
language XChange [9].1 It is however designed so that it can also be deployed
as a stand-alone event mediation component in an event-driven architecture [16]
or in the General Semantic Web ECA Framework described in [23].

The contributions of this article are as follows. (1) We discuss language design
issues of event query languages for the Web (Section 2). We identify four com-
plementary dimensions that need to be considered for querying events. While
they might have been implicit in some works on composite event queries, we are
not aware of any works stating them explicitly before.

(2) We shorty introduce XChangeEQ (Section 3). XChangeEQ is significantly
more high-level and expressive than previous (composite) event query languages.
To the best of our knowledge, XChangeEQ is the first language to deal with
complex structured data in event messages, support rules as an abstraction and
reasoning mechanism for events, and build on a separation of concerns that gives
it ease-of-use and a certain degree of expressive completeness.

(3) We provide formal semantics for XChangeEQ in the form of model and
fixpoint theories (Section 4). While this approach is well-explored in the world
of rule-based and logic programming, its application to an event query language
is novel and should be quite beneficial for research on composite event queries:
semantics of earlier event query languages often have been somewhat ad hoc,
generally with an algebraic and less declarative flavor, and did not accommodate
rules. In our discussion, we highlight where we deviate from traditional model
theories to accommodate the temporal notions required by event queries.

2 Design Considerations

Our work on XChangeEQ is motivated by previous work on XChange [9], a
language employing Event-Condition-Action rules to program distributed, reac-
tive Web applications. Similar to composite event detection facilities found in
active databases [19,18,13,12,1], XChange provides composition operators such
as event conjunction, sequence, repetition, or negation. Our experiences with
programming in XChange [10,7] has taught us that there is a considerable gap
between the requirements posed by applications and the expressivity of composi-
tion operators. Further, event querying based on composition operators is prone
to misinterpretations as discussions in the literature show [29,17,1]. This expe-
rience has lead us to reconsider and analyze the requirements for event query
languages, which we present here, and to the development of XChangeEQ.

A sufficiently expressive event query language should cover (at least) the fol-
lowing four complementary dimensions. How well an event query language covers
each of these dimensions gives a practical measure for its expressiveness.

1 Accordingly, the superscript EQ stands for Event Queries. XChangeEQ replaces the
original composite event query constructs [8] of XChange. It has a different design
and is an improvement both in expressivity and ease-of-use.
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Data extraction: Events contain data that is relevant for applications to decide
whether and how to react to them. For events that are received as XML messages,
the structure of the data can be quite complex (semi-structured). The data of
events must be extracted and provided (typically as bindings for variables) to
test conditions (e.g., arithmetic expressions) inside the query, construct new
events, or trigger reactions (e.g., database updates).

Event composition: To support composite events, i.e., events that consist
out of several events, event queries must support composition constructs such
as the conjunction and disjunction of events (more precisely, of event queries).
Composition must be sensitive to event data, which is often used to correlate
and filter events (e.g., consider only stock transactions from the same customer
for composition). Since reactions to events are usually sensitive to timing and
order, an important question for composite events is when they are detected. In
a well-designed language, it should be possible to recognize when reactions to a
given event query are triggered without difficulty.

Temporal (and causal) relationships: Time plays an important role in event-
driven applications. Event queries must be able to express temporal conditions
such as “events A and B happen within 1 hour, and A happens before B.” For
some applications, it is also interesting to look at causal relationships, e.g., to
express queries such as “events A and B happen, and A has caused B.” In this
article we concentrate only on temporal relationships since causal relationships
can be queried in essentially the same manner.2

Event accumulation: Event queries must be able to accumulate events to
support non-monotonic features such as negation of events (understood as their
absence) or aggregation of data from multiple events over time. The reason for
this is that the event stream is (in contrast to extensional data in a database)
unbounded (or “infinite”); one therefore has to define a scope (e.g., a time inter-
val) over which events are accumulated when aggregating data or querying the
absence of events. Application examples where event accumulation is required
are manifold. A business activity monitoring application might watch out for
situations where “a customer’s order has not been fulfilled within 2 days” (nega-
tion). A stock market application might require notification if “the average of
the reported stock prices over the last hour raises by 5%” (aggregation).

3 The Language XChangeEQ

XChangeEQ is designed on the following foundations.

(1) Its syntax enforces a separation of the four querying dimensions de-
scribed above, yielding a clear language design, making queries easy to read and
understand, and giving programmers the benefit of a separation of concerns.

2 While temporality and causality can be treated similarly in queries, causality raises
interesting questions about how causal relationships can be defined and maintained.
Investigation of these issues is planned for the future.
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Even more importantly, this separation allows to argue that the language reaches
a certain degree of expressive completeness. Our experience, stemming from at-
tempts to express queries with existing event query languages, shows us that
without such a separation not all dimensions are fully covered.

(2) It embeds the Web and Semantic Web query language Xcerpt [28] to
specify classes of relevant events, extract data (in the form of variable bindings)
from them, and construct new events.

(3) It supports rules as an abstraction and reasoning mechanism for events,
with the same motivation and benefits of views in traditional database systems.

These foundations lead to improvements on previous work on composite event
query languages in the following ways: XChangeEQ is a high-level language with
a clear design that is easy to use and provides the appropriate abstractions for
querying events. It emphasizes the necessity to query data in events, which has
been neglected or over-simplified earlier. Being targeted for semi-structured XML
messages as required for CBE, SOAP, and Web Services, it is particularly suitable
for use in business applications domains. We make an attempt towards expressive
completeness by fully covering all four query dimensions explained earlier using
a separation of concerns in XChangeEQ. Arguably, in previous languages that do
not use such a separation, some (usually simple) queries might be expressed more
compactly. This compactness then however leads easily to misinterpretations (as
discussed in [29,17,1]) and comes in previous work at the price of a serious lack
in expressiveness (incomplete coverage of the four dimensions), where less simple
queries cannot be expressed.

Using the example of a stock market application, we now introduce the syntax
of our event query language XChangeEQ.

3.1 Querying Atomic Events

Application-level events are nowadays often represented as XML, especially in
the formats Common Base Event [14] and SOAP [20]. Skipping details of such
formats for the sake of brevity, we will be using four atomic events in our stock
market example: stock buys, stock sells, and orders to buy or sell stocks. Involved
applications may also generate further events without affecting our examples.

The left side of Figure 1 depicts a buy order event in XML. For conciseness and
human readability, we use a “term syntax” for data, queries, and construction
of data instead of the normal tag-based XML syntax. The right side of Figure 1
depicts the XML event as a (data) term. The term syntax is slightly more general
than XML, indicating whether the order of children is relevant (square brackets
[]), or not (curly braces {}).

Querying such single event messages is a two-fold task: one has to (1) specify
a class of relevant events (e.g., all buy events) and (2) extract data from the
events (e.g., the price). XChangeEQ embeds the XML query language Xcerpt
[28] for both. Figure 2 shows an exemplary buy event (left) and an event query
that recognizes such buy events with a price total of $10 000 or more (right).

Xcerpt queries describe a pattern that is matched against the data. Query
terms can be partial (indicated by double brackets or braces), meaning that a
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<order>
<orderId >4711</orderId>
<customer>John</customer>
<buy> <stock>IBM</stock>

<l im i t >3.14</ l im i t>
<volume>4000</volume>

</buy> </order>

order [
order Id { 4711 } ,
customer { ”John” } ,
buy [ stock { ”IBM” } ,

l im i t { 3 .14 } ,
volume { 4000 } ]

]

Fig. 1. XML and term representation of an event

buy [ order Id { 4711 } ,
t rade Id { 4242 } ,
customer { ”John” } ,
s tock { ”IBM” } ,
p r i c e { 2 .71 } ,
volume { 4000 } ]

buy {{ t rade Id { var I } ,
customer { var C } ,
s tock { var S } ,
p r i c e { var P } ,
volume { var V }

}} where { var P ∗ var V >= 10000 }

Fig. 2. Atomic event query

matching data term can contain subterms not specified in the query, or total
(indicated by single brackets or braces). Queries can contain variables (keyword
var), which will be bound to the matching data, and a where-clause can be
attached to specify non-structural (e.g., arithmetic) conditions. In this article,
we will stick to simple queries as above. Note however that Xcerpt supports
more advanced constructs for (subterm) negation, incompleteness in breadth
and depth, and queries to graph-shaped data such as RDF. An introduction to
Xcerpt is given in [28].

The result of evaluating an Xcerpt query on an event message is the set Σ
of all possible substitutions for the free variables in the query (non-matching is
signified by Σ = ∅). Our example query does not match the order event from
Figure 1, but matches the buy event on the left of Fighre 2 with Σ = {σ1},
σ1 = {I �→ 4242, C �→ John, S �→ IBM, P �→ 2.71, V �→ 4000}.

In addition to event messages, XChangeEQ event queries can query for timer
events. Absolute timer events are time points or intervals (possibly periodic)
defined without reference to the occurrence time of some other event. They are
specified in a similar way as queries to event messages and we refer to [3] for
details. Relative timer events, i.e., time points or intervals defined in relation to
some other event, will be looked at in Section 3.3 on event composition.

3.2 Reactive and Deductive Rules for Events

XChangeEQ uses two kinds of rules: deductive rules and reactive rules. Deductive
rules allow to define new, “virtual” events from the events that are received. They
have no side effects and are analogous to the definition of views for database data.
Figure 3 (left) shows a deductive rule deriving a new bigbuy events from buy
events satisfying the earlier event query of Figure 2. Deductive rules follow the
syntax DETECT event construction ON event query END. The event construction
in the rule head is simply a data term augmented with variables which are
replaced during construction by their values obtained from evaluating the event
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DETECT bigbuy {
t rade Id { var I } ,
customer { var C } ,
s tock { var S } }

ON buy {{
t rade Id { var I } ,
customer { var C } ,
s tock { var S } ,
p r i c e { var P } ,
volume { var V }

}} where { var P ∗ var V >= 10000 }
END

RAISE

to ( r e c i p i e n t=
”http : // aud i tor . com” ,
t r an spo r t=
”http : / / . . . /HTTP/”)

{
var B

}
ON var B −> bigbuy {{ }}
END

Fig. 3. Deductive rule (left) and reactive rule (right)

query in the rule body. (Several variables bindings will lead to the construction
of several events if no grouping or aggregation constructs are used.) The event
construction is also called a construct term; more involved construction will be
seen in Section 3.5 when we look at aggregation of data. Recursion of rules is
restricted to stratifiable programs, see Section 4.2 for a deeper discussion.

Reactive rules are used for specifying a reaction to the occurrence of an event.
The usual (re)action is constructing a new event message (as with deductive
rules) and use it to call some Web Service. Note that this new event leaves
the system and that it is up to the receiver to decide on the occurrence time
(typically such events are considered to happen only at the time point when the
corresponding message is received). For tasks involving accessing and updating
persistent data, our event queries can be used in the Event-Condition-Action
rules of the reactive language XChange.

An example for a reactive rule is in Figure 3 (right); it forwards every big-
buy event (as derived by the deductive rule on the left) to a Web Service
http://auditor.com using SOAP’s HTTP transport binding. The syntax for
reactive rules is similar to deductive rules, only they start with the keyword
RAISE; in the rule head to() is used to indicate recipient and transport.

The distinction between deductive and reactive rules is important. While it
is possible to “abuse” reactive rules to simulate or implement deductive rules
(by sending oneself the result), this is undesirable: it is difficult with events that
have a duration, misleading for programmers, less efficient for evaluation, and
could allow arbitrary recursion (leading, e.g., to non-terminating programs or
non-stratified use of negation).

3.3 Composition of Events

So far, we have only been looking at queries to single events. Since temporal
conditions are dealt with separately, only two operators, or and and, are neces-
sary to compose event queries into composite event queries. (Negation falls under
event accumulation, see Section 3.5.) Both composition operators are multi-ary,
allowing to compose any (positive) number of event queries (without need for
nesting), and written in prefix notation. Disjunctions are a convenience in prac-
tical programming but not strictly necessary: a rule with a (binary) disjunction
can be written as two rules. We therefore concentrate on conjunctions here.
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DETECT b u yo r d e r f u l f i l l e d { order Id { var O } ,
t rade Id { var I } ,
s tock { var S } }

ON and {
order { order Id { var O } ,

buy {{ stock { var S } }} } ,
buy {{ order Id { var O } ,

t rade Id { var I } }} }
END

Fig. 4. Conjunction of event queries

and { event o : order {{ order Id { var O } }} ,
event t : extend [ o , 1 min ] }

Fig. 5. Composition with relative timer event

When two event queries are composed with and, an answer to the composite
event query is generated for every pair of answers to the constituent queries. If
the constituent queries share free variables, only pairs with “compatible” variable
bindings are considered. (This generalizes to composition of three and more event
queries in the obvious manner.) Figure 4 illustrates the use of the and operator.
The buy order fulfilled event is detected for every corresponding pair of buy
order and buy event. The events have to agree on variable O (the orderId). The
occurrence time of the detected order fulfilled event is the time interval enclosing
the respective constituent events.

Composition of events gives rise to defining relative timer events, i.e., time
points or intervals defined in relation to the occurrence time of some other event.
Figure 5 shows a composite event query asking for an order event and a timer
covering the whole time interval from the order event until one minute after.
This timer event will be used later in Section 3.5 when querying for the absence
of a corresponding buy event in this time interval.

An event identifier (o) is given to the left of the event query after the keyword
event. It is then used in the definition of the relative timer extend[o, 1 min]
which specifies a time interval one minute longer than the occurrence interval
of o. (The time point at which o occurs is understood for this purpose as a
degenerated time interval of zero length.) The event identifier t is not necessary
here, but can be specified anyway. Event identifiers will also be used in temporal
conditions and event accumulation (Sections 3.4 and 3.5).

Further constructors for relative timers are: shorten[e,d] (subtracting d
from the end of e), extend-begin[e,d], shorten-begin[e,d] (adding or sub-
tracting d at the begin of e), shift-forward[e,d], shift-backward[e,d]
(moving e forward or backward by d).

3.4 Temporal Conditions

Temporal conditions on events and causal relationships between events play an
important role in querying events. We concentrate in this paper on temporal
conditions, though the approach generalizes to causal relationships. Just like
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DETECT ear lyRese l lWithLoss { customer { var C } ,
s tock { var S } }

ON and {
event b : buy {{ customer { var C } ,

s tock { var S } ,
p r i c e { var P1 } }} ,

event s : s e l l {{ customer { var C } ,
s tock { var S } ,
p r i c e { var P2 } }}

} where { b be f o r e s , t imeDi f f (b , s)<1hour , var P1>var P2 }
END

Fig. 6. Event query with temporal conditions

conditions on event data, temporal conditions are specified in the where-clause
of an event query and make use of the event identifiers introduced above.

The event query in Figure 6 involves temporal conditions. It detects situations
where a customer first buys stocks and then sells them again within a short time
(less than 1 hour) at a lower price. The query illustrates that typical applications
require both qualitative conditions (b before s) and quantitative (or metric)
conditions (timeDiff(b,s) < 1 hour). In addition, the query also includes a
data condition for the price (var P1 > var P2).

In principle, various external calendar and time reasoning systems could be
used to specify and evaluate temporal conditions. However, many optimizations
for the evaluation of event queries require knowledge about temporal conditions.
See [6] for an initial discussion of temporal optimizations.

XChangeEQ deals with non-periodic time intervals (time points are treated
as degenerated intervals of zero length), periodic time intervals (i.e., sequences
of non-periodic intervals), and durations (lengths of time). An overview of the
built-in constructs for temporal conditions can be found in [3].

Note that there is an important difference between timer events used in queries
and references to time as part of where-conditions. Timer events have to happen
for the event query to yield an answer (i.e., they are waited for), while time
references in conditions can lie in the future and only restrict the possible answers
to an event query.

3.5 Event Accumulation

Event querying displays its differences to traditional querying most perspicuously
in non-monotonic query features such as negation or aggregation. For traditional
database queries, the data to be considered for negation or aggregation is read-
ily available in the database and this database is finite.3 In contrast, events are
received over time in an event stream which is unbounded, i.e., potentially in-
finite. Applying negation or aggregation on such a (temporally) infinite event
stream would imply that one has to wait “forever” for an answer because events
received at a later time might always change the current answer. We therefore
need a way to restrict the event stream to a finite temporal extent (i.e., a finite

3 Recursive rules or views may allow to define infinite databases intensionally. How-
ever, the extensional data (the “base facts”) is still finite.
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DETECT buyOrderOverdue {
order Id { var I } }

ON and {
event o : order {{

order Id { var I }
buy {{ }} }} ,

event t : extend [ o , 1 min ] ,
wh i l e t : not buy {

order Id { var I } }
}

END

RAISE to ( . . . ) {
reportOfDai lyAverages {

a l l entry {
stock { var S } ,
avgPr ice { avg ( a l l var P) }

} group−by var S } }
ON and {

event t : tradingDay {{ }} ,
wh i l e t : c o l l e c t s e l l {

stock { var S } ,
p r i c e { var P } }

END

Fig. 7. Event accumulation for negation (left) and aggregation (right)

time interval) and apply negation and aggregation only to the events collected
in this accumulation window.4

It should be possible to determine the accumulation window dynamically de-
pending on the event stream received so far. Typical cases of such accumulation
windows are: “from event a until event b,” “one minute until event b,” “from
event a for one minute,” and (since events can occur over time intervals, not
just time points) “while event c.” Here we only look at the last case because it
subsumes the first three (they can be defined as composite events).

Negation is supported by applying the not operator to an event query. The
window is specified with the keyword while and the event identifier of the event
defining the window. The meaning is as one might expect: the negated event
query while t: not q is successful if no event satisfying q occurs during the
time interval given by t. An example can be seen in Figure 7 (left): it detects
buy orders that are overdue, i.e., where no matching buy transaction has taken
place within one minute after placing the order. The accumulation window is
specified by the event query t, which is a timer relative to the order event.
Observe that the negated query can contain variables that are also used outside
the negation; the example reveals the strong need to support this.

Following the design of the embedded query language Xcerpt, aggregation
constructs are used in the head of a rule, since they are related to the construction
of new data. The task of the body is only collecting the necessary data or events.
Collecting events in the body of a rule is similar to negation and indicated by
the keyword collect. The rule in Figure 7 (right) has an event query collecting
sell events over a full trading day. The actual aggregation takes place in the
head of the rule, where all sales prices (P ) for the same stock (S) are averaged
and a report containing one entry for each stock is generated. The report is sent
at the end of each trading day; this is reflected in the syntax by the fact that
tradingDay{{ }} must be written as an event, i.e., must actually occur.

Aggregation follows the syntax and semantics of Xcerpt (see [27] for a full
account), again showing that it is beneficial to base an event query language
on a data query language. The keyword all indicates a structural aggregation,

4 Keep in mind that accumulation here refers to the way we specify queries, not the way
evaluation is actually performed. Keeping all events in the accumulation windows in
memory is generally neither desirable nor necessary for query evaluation.
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generating an entry element for each distinct value of the variable S (indicated
with group-by). Inside the entry-element an aggregation function avg is used
to compute the average price for each individual stock.

Aggregation has rarely been considered in work on composite events, though
it is clearly needed in many applications, including our stock market example.
A notable exception is [24], which however applies only to relational data (not
semi-structured or XML) and does not have the benefits of a separation of the
query dimensions as XChangeEQ.

4 Formal Semantics

Having introduced XChangeEQ informally above, we now supply formal, declara-
tive semantics for stratified programs in the form of model and fixpoint theories.
While this is a well-established approach for rule-based languages [22,2], includ-
ing traditional database query languages supporting views or deductive rules, it
has not been applied to event query languages before. Related work on semantics
for event queries usually has an “algebraic flavor” (as the languages themselves
do), where the semantics for operators are given as functions between sequences
(or histories or traces) of events, e.g., [30,21]. Further, these approaches often
neglect data in events (especially semi-structured data) and it is not clear how
they could be extended to support deductive rules (or views) over events.

In addition to accommodating both rules and data, the model theoretic ap-
proach presented here can be argued to be more declarative than previous alge-
braic approaches, expressing how an event is to be to detected rather than what
event is to be detected, making programs easier to understand and optimize.

The following specifics of querying events as opposed to pure (database) data
have to be arranged for in our semantics and make it novel compared their
counterpart in the logic programming literature [22,2]: (1) in addition to normal
variables, event identifiers are accommodated, (2) answers to composite event
queries have an occurrence time, (3) temporal relations have a fixed interpre-
tation. Finally, the model theory must be (4) sensible for potentially infinite
streams of events (this also entails that negation and aggregation of events must
be “scoped” over a time window as we have seen earlier in Section 3.5).

4.1 Model Theory

Our model theory is Tarskian-style [11], i.e., it uses a valuation function for
free variables and defines an entailment relation between an interpretation and
sentences (rules and queries) from the language recursively over the structure
of the sentences.5 Tarskian model theories have the advantage of being highly
declarative, theoretically well-understood, and relatively easy to understand.

An event happens over a given time interval and has a representation as
message (as data term). Formally it is a tuple of a (closed and convex) time
interval t and a data term e, written et. The set of all events is denoted Events.
5 This recursive definition over the structure allows to consider sub-formulas of a

formula in isolation, which is beneficial for both understanding and evaluation.
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Time is assumed to be a linearly6 ordered set of time points (T, <). The time
intervals over which events happen are closed and convex, i.e., have the form
t = [b, e] = {p | b ≤ p ≤ e} (where b ∈ T and e ∈ T). For convenience we define:
begin([b, e]) = b, end([b, e]) = e, [b1, e1] � [b2, e2] = [min{b1, b2}, max{e1, e2}],
and [b1, e1] � [b2, e2] iff b2 ≤ b1 and e1 ≤ e2.

Matching of Atomic Event Queries against single incoming events is
based on a non-standard unification that is especially designed for the varia-
tions and incompleteness in semi-structured data. Atomic Event Queries are
single query terms q that match only for the data term part e of events et; this
does not involve time or multiple events. Note that the query terms usually con-
tain free variables. The matching of query terms and data terms is based on
Simulation, which is a relation between ground terms, denoted 	. Intuitively,
q 	 d means that the nodes and structure of q can be found in d. Simulation
naturally extends to a non-ground query term q′ by asking whether there is
a (grounding) substitution σ for the free variables in q′ such that the ground
query term q = σ(q′) obtained by applying the substitution σ to q′ simulates
with the given data term d. Further details can be found in [27]; they are not
important for understanding the presented model theory and thus not discussed
here.

Substitution sets Σ rather than single substitutions σ are used in our model
theory to accommodate grouping and aggregation in the construction in rule
heads. Application Σ(c) of Σ to a construct term c results in a set of data
terms. For convenience we also define the application to query terms q with
Σ(q) = {σ(q) | σ ∈ Σ}.

An interpretation for a given XChangeEQ query, rule, or program is a 3-tuple
M = (I, Σ, τ), where (1) I ⊆ Events is the set of events et that “happen,” i.e.,
are either in the stream of incoming events or derived by some deductive rule. (2)
Σ �= ∅ is a grounding substitution set containing substitutions for the “normal”
variables (i.e., data variables, but not event identifiers). (3) τ is a substitution
for the event identifiers, i.e., a mapping from event variables to Events. The
substitution τ for event identifiers (cf. Section 3.3) is the first unusual features
of our model theory. Since τ signifies the events that contributed to the answer
of some query, we also call it an “event trace.”

The satisfaction M |= F t of an XChangeEQ expression F over an occur-
rence time t in an interpretation M is defined recursively in Figure 8. The time
stamping of expressions is the second unusual feature of our model theory.

Given an XChangeEQ program P and a stream of incoming events E, we call
an interpretation M = (I, Σ, τ) a model of P under E if (1) M satisfies all rules
(c ← Q) ∈ P for all time intervals t and (2) contains the stream of incoming
events, i.e., E ⊆ I. Note that here the event stream simply corresponds to the
notion of base facts or extensional data found of traditional model theories.

The satisfaction relation uses a fixed interpretation W for all conditions that
can occur in the where-clause of a query. This includes the temporal relations

6 Linear time is chosen because we are interested in event that actually happened, not
in potential futures (where a branching time would be more apt).
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I, Σ, τ |= (event i : q)t iff exists et′ ∈ I with τ(i) = et′ , t′ = t,
and for all e′ ∈ Σ(q) we have e′ � e

I, Σ, τ |= (event i : extends[j, d])t iff exists et′ with τ(j) = et′ , τ(i) = et, t = t′ + d
. . . (Definitions for other temporal events are similar and skipped.)

M |= (q1 ∧ q2)t iff M |= q
t1
1 and M |= q

t2
2 and t = t1 � t2

M |= (q1 ∨ q2)t iff M |= qt
1 or M |= qt

2
I, Σ, τ |= (Q where C)t iff I, Σ, τ |= Qt and WΣ,τ (C) = true

I, Σ, τ |= (while j : not q)t iff exists et′ with τ(j) = et′ , t′ = t,

and for all t′′ � t we have I, Σ, τ 	|= qt′′

I, Σ, τ |= (while j : collect q)t iff exists et′ with τ(j) = et′ , t′ = t, and exist n ≥ 0,
Σ1, . . . Σn, t1 � t, . . . tn � t with Σ =

S
i=1..n Σi,

and for all i = 1..n we have I, Σi, τ |= qti

I, Σ, τ |= (c ← Q)t iff (1) Σ′(c)t ⊆ I for Σ′ maximal (w.r.t. FreeV ars(Q)) and τ ′

such that I, Σ′, τ ′ |= Qt, or (2) I, Σ′, τ ′ 	|= Qt for all Σ′, τ ′

WΣ,τ (i before j) = true iff end(τ(i)) < begin(τ(j))
WΣ,τ (i during j) = true iff begin(τ(j)) < begin(τ(i)) and end(τ(i)) < end(τ(j))
WΣ,τ (i overlaps j) = true iff begin(τ(j)) < begin(τ(i)) < end(τ(j)) < end(τ(i))

Fig. 8. Model Theory for XChangeEQ

like before and is the third unusual feature of our model theory. W is a function
that maps a substitution set Σ, an event trace τ , and an atomic condition C
to true or false; we usually write Σ and τ in the index. WΣ,τ extends straight-
forwardly to boolean formulas of conditions. The definition of W is left outside
the “core model theory” to make it more modular and allow to easily integrate
different temporal reasoners. In Figure 8, we have given only the definitions for
before, during, and overlaps for space reasons.

Our fourth requirement on the model theory was that it is sensible on (po-
tentially) infinite streams of events. The basic idea for this is that to evaluate
a program P over a time interval t, we only have to consider events happening
during t. We will state this formally after giving the fixpoint theory.

4.2 Fixpoint Theory

A model theory, such as the one presented above, has the issue of allowing many
models for a given program. A common and convenient way to obtain a unique
model is to define it as the solution of a fixpoint equation (which is based on
the model theory). A fixpoint theory also describes an abstract, simple, forward-
chaining evaluation method, which can easily be extended to work incrementally
as is required for event queries [4].

Our fixpoint theory requires XChangeEQ programs to be stratifiable [2].
Stratification restricts the use of recursion in rules by ordering the rules of
a program P into so-called strata (sets Pi of rules with P = P1  · · ·  Pn) such
that a rule in a given stratum can only depend on (i.e., access results from) rules
in lower strata (or the same stratum, in some cases). The restriction to stratifi-
able programs could be partially lifted at the cost of a more involved semantics
(and evaluation). This is however outside the scope of this paper.

Three types of stratification are required: (1) Negation stratification, i.e.,
events that are negated in the query of a rule may only be constructed by



28 F. Bry and M. Eckert

rules in lower strata, events that occur positively may only be constructed by
rules in lower strata or the same stratum. (2) Grouping stratification, i.e., rules
using grouping constructs like all in the construction may only query for events
constructed in lower strata. (3) Temporal stratification, i.e., if a rule queries a
relative temporal event like extends[i, 1min] then the anchoring event (here:
i) may only be constructed in lower strata. While negation and grouping strat-
ification are fairly standard, temporal stratification is a requirement specific to
complex event query programs like those expressible in XChangeEQ. We are not
aware of former consideration of the notion of temporal stratification. For a
formal definition of our stratification, we refer to [5].

The fixpoint operator TP for an XChangeEQ-Program P is defined as:

TP (I) = I ∪ {et | there exist a rule c ← Q ∈ P, a maximal substitution set Σ,

and a substitution τ such that I, Σ, τ |= Qt and e ∈ Σ(c)}
The repeated application of TP until a fixpoint is reached is denoted T ω

P .
The fixpoint interpretation7 MP,E of a program P with stratification P =

P1· · ·Pn under and event stream E is defined by computing fixpoints stratum
by stratum: M0 = E = T ω

∅ (E), M1 = T ω
P1

(M0) . . . , MP,E = Mn = T ω
Pn

(Mn−1).
Here, Pi =

⋃
j≤j Pj denotes the set of all rules in strata Pi and lower.

Theorem 1 justifies our definition as usual for fixpoint semantics: For a
stratifiable program P and an event stream E, MP,E is a minimal model of P
under E. Further, MP,E is independent of the stratification of P .

More interestingly, we can show that the model theory and fixpoint semantics
are sensible on infinite event streams. The next theorem justifies a streaming
evaluation, where answers to composite event queries are generated “online”
and we never have to wait for the stream to end (which it will not if infinite).
This is the last feature of our semantics that is peculiar for event queries.

Theorem 2: Let E | t denote the restriction of an event stream E to a time
interval t, i.e., E | t = {et′ ∈ E | t′ � t}. Similarly, let M | t denote the
restriction of an interpretation M to t. Then the result of applying the fixpoint
procedure to E | t is the same as applying it to E for the time interval t, i.e.,
MP,E|t | t = MP,E | t. In other words to evaluate a program over a time interval
t, we do not have to consider any events happening outside of t.

Proofs for both theorems are presented in an extended version of this paper [5].
The proof for theorem 1 is an adoption of a proof in [22].

5 Conclusions and Future Work

This article has introduced the high-level event query language XChangeEQ,
emphasizing language design and formal semantics. XChangeEQ deviates from
previous event query languages in a separation of the query dimensions data
extraction, event composition, temporal relationships, and event accumulation.
7 Since we consider whole programs P now, only the set I of events that happen is

relevant for the fixpoint interpretation of P ; Σ and τ are thus skipped from now on.
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This separation allows a complete coverage of each of the dimensions, yielding a
language that can be argued to have reached a degree of expressive completeness.

The ability to query events represented in XML and other Web formats,
makes XChangeEQ suited for use in service-oriented and event-driven architec-
tures based on Web Services. Important for practical use, rules are supported as
an abstraction and reasoning mechanism for events. Rule-based reasoning about
events is also expected to become relevant in efforts to bring rules, including
reactive rules, to the (Semantic) Web [26,4].

Efficient evaluation methods that utilize temporal conditions [6] and query op-
timization for large numbers of event queries are the current focus of our research.
Implementation of our language in the scope of XChange is ongoing work.
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Abstract. Supporting service discovery by semantic service specifica-
tions is currently an important research area. While the approaches for
the annotation of individual services are well researched, determining the
semantics of compositions of services remains an open research issue.

In this paper, we present an approach to generate the semantics of
service compositions from the semantics of the contained services. To do
this we assume a formal Workflow net model of the service composition.
With an example use case we show how this works in practice.

1 Introduction

Discovery, composition, and management of services are the most important
tasks in a service-oriented architecture (SOA) [1,2]. To perform them success-
fully in a large service landscape, semantic specifications of service functionality
are important [3,4,5]. While several approaches for the description of individual
service functionality exist, how to determine the functionality of service compo-
sitions remains largely unclear. It is the aggregation of the functionality of the
individual services inside the composition. But determining this in the presence
of complex control flow constructs is challenging. In this paper, we provide a
formal model for the calculation of service composition functionality based on
Petri nets that allows us to calculate the functionality for processes containing
and- or xor- splits and joins.

There a several approaches for the description of individual service functional-
ity through semantic service specification. The two most prominent approaches
are OWL-S [6] and WSMO [7]. In OWL-S a service has a service profile that
contains the functionality description consisting of input, output, precondition,
and effect. These four elements describe the functionality of the service. The
input describes the input parameters of the service; the output describes what
the service returns. With precondition and effect logical expressions can be for-
mulated to describe the states in which the service is invokable and that are
reached by invoking the service. WSMO has a very similar model: A service
has capability consisting of precondition, assumption, postcondition, and effect.
While precondition and postcondition correspond to input and output in OWL-
S, assumption and effect correspond to precondition and effect in OWL-S. So
while they differ in syntax, terminology, and in the logical foundations used to
express service functionality, they both agree on extending service descriptions

M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 31–42, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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by logical expressions to describe the situation in which a service is invokable
and the effects on the situation by invoking the service [8]. Having semantic
service specifications, facilitates the discovery of services. As the functionality
of services is known, matchmaking can be used to find services matching given
preconditions and effects. Composition and management both heavily rely on
discovery so semantic service specifications support them as well.

We argue that knowing what a service composition does is equally important
as knowing what individual services do. A service composition is not the task
of creating the process but the resulting process that can be enacted. Know-
ing the functionality of a service composition is important if discovery is not
only performed on individual services but also on service compositions. While
no individual service fulfills the request, an existing composition might fulfill
it. Finding it, saves us from re-modeling it. Also service compositions can be
exposed as services again. This service requires a semantic service specification.
By giving means to calculate the functionality of the new service from the func-
tionality of the services it is composed of, the publication of the new service is
simplified.

One might be interested in what a service composition does to verify that
it works as expected. After modeling a service composition, one can calculate
the functionality and check, manually or automated, whether it provides the de-
sired functionality. This verification task can also be part of a semi-automated
service composition approach. In [9] and [10] we introduced three mixed ini-
tiative features for semi-automated composition: filter inappropriate services,
suggest partial plans, and check validity. While the two first features can be
implemented using existing service matchmaking and automated service com-
position approaches, the last one can be realized by the work presented in this
paper. A last use case for the verification of service composition is the verifica-
tion of automated service composition results. While proofs for the correctness
of automated service composition approaches exist, bugs in the implementation
or incorrect service specifications can lead to erroneous service compositions.
Checking whether the created service composition serves the intended purpose,
can detect some of problems.

In the next section, we will give a short overview of Petri nets and workflow
nets. Then in Section 3 we will present our formal model on how to express the
semantics of services inside a Petri net. This model will serve as the foundations
for the algorithms presented in Section 4 for the calculation of service composi-
tion preconditions and effects. Afterwards, in Section 5, we will show how this
algorithm works with a service composition example and demonstrate our tool
that implements these algorithms. The paper closes with an overview of related
work in Section 6 and the conclusion in Section 7.

2 Preliminaries: Petri Nets and Workflow Nets

This section describes the notions of Petri nets and workflow nets. A Petri net is
a directed bipartite graph. It contains two sets of vertices: places and transitions.
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The directed edges connect either a place with a transition or a transition with
a place.

Definition 1. A Petri net is a triple n = (P, T, f) with:

– P : set of places
– T : set of transitions
– f ⊆ (P × T ) ∪ (T × P )

The sets of places and transitions are disjoint : P ∩ T = ∅
The input and output places of a transition t are denoted with ·t and t·. Each
place can host multiple token. The assignment of tokens to the places of a Petri
net is called the marking:

Definition 2. A marking is function m : P → N that assigns to each place the
number of tokens in this place.

The marking represents the state of the Petri net. State changes of the Petri net
result in different markings. State changes can occur when an enabled transition
fires :

Definition 3. A transition t is enabled if all its input places ·t contain at least
one token.

If a transition t fires one token is removed from each input place and one
token is added to each output place.

Petri nets are a very generic concept to describe processes. Workflow nets restrict
the notation of Petri nets to a subset sufficient for modeling the control flow of
workflows:

Definition 4. A Petri net n = (P, T, f) is a workflow net iff:

– The net has one input place i (no incoming transitions)
– The net has one output place o (not outgoing transitions)
– Every vertex v ∈ P ∩ T is on a path from the input place to the output pace.

A workflow net is sound if it terminates with one token in place o and no tokens
in any other place and it does not contain any dead tasks. In the following we
will limit ourselves to sound workflow nets to model service compositions.

3 Formal Model

To support the calculation of service composition functionality, workflow nets
need to be extended to incorporate service semantics. Before this can be done,
we first need to define a few basic concepts. A service is a discrete business
functionality. It is described by a service specification:

Definition 5. A service specification s = (I,O, pre, eff) is a tuple with
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– I: List of input parameters consisting of variables ∈ V
– O: List of output parameters consisting of variables ∈ V
– pre: The precondition of the service is a logical expression and must be sat-

isfied in order to invoke the service.
– eff : The effect of the service is a logical expression. It describes the changes

to the current state resulting from the invocation of the service.

A service invocation i = (s, z) is a pair consisting of a service specification
s and a variable assignment z : V → Tground that assigns every variable a ground
term. Variables v ∈ V are all the elements from I and O plus the variables in
pre and eff .

INV is the set of all possible service invocations for a given set of service
specifications.

Service invocations represent the atomic elements of service compositions. They
are ordered in such a way to reach the goal of the service composition. In a
workflow net they are the transitions. Hence, to represent them in a workflow
net, the definition for workflow nets needs to be extended:

Definition 6. A semantic workflow net is a 4-tuple sn = (P, T, f, ls) is a Petri
net n = (P, T, f) with a function ls : T → INV that maps each transition to a
service invocation.

Finally, we need to refine the concept of states. In a workflow net the state is the
marking assigning tokens to the place of the net. But given logically specified
service semantics, a logical state exists as well. The logical state is a logical
expression assigned to each marking of a workflow net. How these states are
calculated will be presented in the next section.

4 Calculation of Service Composition Precondition and
Effect

How to calculate the precondition and effect of given a semantic workflow net is
described in this section. First the effect calculation will be introduced. After-
wards it is shown how this algorithm can be modified and extended to calculate
preconditions. To do this, we need to define what happens when a service is
invoked:

Definition 7. A service invocation i = (s, z) with s = (I,O, pre, eff) is in-
vokable in state a if a |= pre. Invoking service s variable assignment z in
state a leads to a state transition. This can be defined by the state transition
function

γ(a, i) = a
⋃

eff \ ({x|¬x ∈ eff}⋃{¬x|ifx ∈ eff}). γ is a partial function
only defined if a |= pre.

If an invokable service is invoked, all its effects are added to the state. Then all
the facts of the state which are negated in the effects and all negated facts of
the state which are not negated in the effects are removed from the new state.
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4.1 Calculation of Effects

The calculation of the effects of a service composition works by recursively defin-
ing the current state for markings of the workflow net. Before we can show how
this is done, we need to introduce the reachability graph:

Definition 8. Given a semantic workflow net n = (P, T, f, ls) and an initial
marking m1 the reachability graph is a directed, labeled graph mg = (V, E, lV , lE).
The vertices V represent the possible markings. The labeling function lV : V →
M assigns to each vertex the according marking. The edges E represent the
transitions of the Petri net. The labeling function lE : E → T assigns a transition
to every edge.

Given this notion of a reachability graph the logical state for a given marking
can be defined based on the logical states of its preceding markings:

Definition 9. The logical state s for a marking m is given as s =
∨

γ(sm′ , i′)
with i′ = ls(lE(e)) and e = (m′, m) ∈ E where sm′ is the logical state of m′. The
initial marking has the empty logical state s0.

The effect of a service composition is the logical state assigned to its final
marking.

This means that the state for a marking is given by the states of its preced-
ing markings and the effects of the transitions leading from them to the current
marking. If a marking has more than one incoming marking, several actual states
are possible. To express this in one state, all possible states are combined dis-
junctively. With this possibility to calculate the logical state for a marking, the
effect of a workflow net is the state assigned to its final marking. To show how
this works we will now look at three prominent examples: sequence, and-split
and -join, xor-split and join. For each, its effect will be calculated.

First, Figure 1 shows a workflow net containing a sequence and all possible
markings. The initial marking is m1T with sm1 = {}; m3 is the final marking
and we want to calculate s3. To calculate it we need to solve γ(sm2 , t2) which
can be reduced to γ(γ(sm1 , t1), t2) = γ(γ({}, t1), t2) = a ∧ b.

Similarly compositions with and-splits and -joins work (Fig. 2). This process
has the following markings:

– m1 = p1 (initial marking)
– m2 = p2 + p3

– m3 = p3 + p4

– m4 = p2 + p5

– m5 = p4 + p5

– m6 = p6 (final marking)

This results in the reachability graph displayed in Figure 3. To calculate
the service composition effect, the logical state assigned to the final marking
M6 needs to be calculated. This state is given by sm6 = γ(sm5 , t4) =
γ(γ(sm3 , t3) ∨ γ(sm4 , t2), t4) = γ(γ(γ(sm2 , t2), t3) ∨ γ(γ(sm2 , t3), t2), t4) =
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Fig. 1. Workflow net with a sequence
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Fig. 2. Workflow Net with And-split and-join

γ(γ(γ(γ(sm1 , t1), t2), t3)∨γ(γ(γ(sm1 , t1), t3), t2), t4) = ((a∧b∧c)∨(a∧c∧b))∧d =
a∧b∧c∧d. As you can see, even though the algorithm introduced a disjunction,
it can be reduced to the expected outcome.

Finally, let us look at a composition with xor-splits and -joins. This composi-
tion is depicted in Figure 4. It has the following markings:

– m1 = p1 (initial marking)
– m2 = p2

– m3 = p3

– m4 = p4 (final marking)

The initial marking has two succeeding markings: m2 and m3. And both mark-
ings have exactly one succeeding marking m4, the final marking. Calculating the
state sm4 works as follows: sm4 = γ(sm2 , t3) ∨ γ(sm3 , t4) = γ(γ(sm1 , t1), t3) ∨
γ(γ(sm1 , t2), t4) = (a∧c)∨(b∧d). So this results in an effect for the composition
one might expected. Either t1 and t3 or t2 and t4 are invoked. Actually, the
service effect also allows for a third possibility: all four transitions are invoked.
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Fig. 3. Reachability Graph for And-split and -join
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Fig. 4. Workflow Net with Xor-split and-join

This does not map exactly to the semantics of the Workflow net, which forbids
this possibility. While using exclusive or would solve this problem, it opens up
another one. The previous Workflow net contained an and-split and an and-join.
In it the transitions t2 and t3 can fire in arbitrary order leading to distinct mark-
ings. In logics, the order of propositions is irrelevant, rendering (a ∧ b ∧ c) and
(a∧c∧b) equivalent. Using inclusive or, this means that they can be merged. But
with an exclusive or this results in a contradiction. Therefore, we choose the in-
clusive or leading to composition effects that are less restrictive than implied by
the Workflow net. One possible solution to overcome this problem, is to replace
the inclusive or by an exclusive or only after the whole calculation is finished
and possible contradictions are resolved. This is allowed if only those axioms of
the boolean algebra (A,∧,∨) are used that are also defined in the corresponding
boolean ring (A,⊕,∧) plus idempotence.

In all examples listed above, the service effects were quite simple consisting
of a singular fact. But service effects can be more complicated. They can con-
tain conjunctions and disjunctions. In the next section, we will look at such a
more complicated example. They may also contain first-order literals containing
variables. Of course, these variables must be grounded in the service invocations
assigned to the transitions.

The main restriction the algorithm currently has is that it does not allow
for cycles in the workflow net. Because if it encounters a workflow net with
cycles, the algorithm is not guaranteed to terminate. But for acyclic workflow
nets termination is guaranteed.
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4.2 Precondition Calculation

If it is possible to calculate the effects of a service composition, calculating
the precondition should work similarly. In principle, this works like the ef-
fect calculation in reverse. Instead of calculating the state achieved when in-
voking the service composition, we want to determine the requirements on a
state necessary to invoke the service. This works by starting from the initial
marking and adding up all the preconditions until reaching the final mark-
ing. But there is one important distinction. Preconditions of services inside
the compositions can be fulfilled by the effects of preceding services. These
preconditions do not need to specified as part of the service composition
precondition.

Definition 10. The precondition prem for a marking m is given by prem =∨
prem′ ∪ (prei′ − sm) for all pairs prem′ and i′ with i′ = ls(lE(e)) where e =

(m, m′) ∈ E and prem′ is the precondition of m′. The final marking has the
empty precondition prefinal.

The precondition of a service composition, is the precondition prem1 of its
initial marking.

So instead of traversing the reachability graph backward until reaching the initial
marking, the graph is traversed forward until the final marking is reached. Before
adding the precondition of a service to the precondition of a marking, all the
facts already known in the current logical state are removed. This ensures that
preconditions satisfied by other services are not added to the precondition of
the service composition. The current logical state can be calculated given the
method for service composition effects described earlier.

As this algorithm is quite similar to the effect calculation algorithm, only
one example will be demonstrated: the process with and-splits and -joins from
Figure 4. In contrast to the other figures, it also lists the preconditions for the
services. To calculate the precondition of composition, we need to calculate the
precondition for m1. It is given by m1 = (prem2 ∪ (pret1 − sm1)) ∨ (prem3 ∪
(pret2 − sm1)) = ((prem4 ∪ (pret3 − sm2)) ∪ (pret1 − sm1)) ∨ ((prem4 ∪ (pret4 −
sm3))∪(pret1 −sm1)) = ({}∪(pt3 −sm2))∪(pret1 −sm1))∨({}∪(pret4 −sm3))∪
(pret2 − sm1)) = ({} ∪ ({a}− sm2))∪ ({x}− sm1))∨ ({}∪ ({y}− sm3))∪ ({x}−
sm1)) = ({} ∪ ({a} − {a})) ∪ ({x} − {})) ∨ ({} ∪ ({y} − {b})) ∪ ({x} − {})) =
({} ∪ {} ∪ {x}) ∨ ({} ∪ {y} ∪ {x}) = (x) ∨ (x ∧ y). Intuitively, we connect the
two possible paths disjunctively and remove the precondition of t3 because it is
already fulfilled by the effect of t1.

To sum up, in this section we have seen how service composition precondi-
tions and effects can be calculated. Both algorithms, are based on traversing
the reachability graph containing all possible state transitions. The algorithm
to calculate service composition preconditions requires the calculation of logical
states for each marking except for the final marking. Having calculated the pre-
condition, the effect calculation is reduced to determining the logical state for
this final marking without traversing the reachability graph.
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5 Example and Tooling

In this section a more complicated example is introduced and it is shown how it
can be analyzed with our tool. The tool is a command line tool implemented in
Java that reads Petri nets specified in the LoLA format [11]. We extended this
format to incorporate preconditions and effects of transitions. An extract from
our example looks like this:

PLACE s1, s2, s3, s4, s5, s6, s7,s8;

MARKING s1: 1;

TRANSITION order
CONSUME s1: 1;
PRODUCE s2: 1, s3: 1;
PRECONDITION ;
EFFECT ordered;

...

TRANSITION close
CONSUME s6: 1, s7: 1;
PRODUCE s8: 1;
PRECONDITION rsent and shipped;
EFFECT order_closed;

Such a file defines places, transitions and the initial marking for a Petri net.
Each TRANSITION contains two additional sub-elements, PRECONDITION
and EFFECT, describing the semantics of this transition. The example used in
this section is an order process (Fig. 5). After ordering, shipment and sending
the receipt are done in parallel. Depending on the requested shipper, one out of
two allowed shippers is selected. Preceding the two shipment services are empty
transitions. They do not perform any functionality but just decide which route
should be taken. This example contains an and-split, an and-join, an xor-split,
and an xor-join. To not overload the diagram, it does not contain the semantics
for the transitions. They are instead depicted in Table 5.

Table 1. Preconditions and Effects of the Services

Transition Precondition Effect

order ordered

send receipt ordered rsent

shipping1 ordered ∧ shipper1 shipped

shipping2 ordered ∧ shipper2 shipped

close rsent ∧ shipped order closed
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Fig. 5. Petri net of Order Service Composition

Using the tool, it is possible to calculate the semantics of the composition.
As the effect it calculates orderclosed ∧ ordered ∧ rsent ∧ shipped. The inter-
esting fact about this effect is that it does not contain a xor even though the
composition contained an xor-split. But as both possible paths have the same
semantics (the order is shipped) this is explainable. The calculated precondition
is (ordered∧rsent∧shipped∧shipper1)⊕(ordered∧rsent∧shipped∧shipper2).
Obviously, the preconditions fulfilled by preceding services are not removed from
the composition’s precondition. This is a weakness of the current implementa-
tion. It uses a simplistic, propositional reasoner developed specifically for this
tool. One of the next steps, is to replace it by a full fledged reasoner like Pellet.

6 Related Work

The algorithms presented allow the calculation of service composition precondi-
tions and effects. This allows for the automated generation of service specification
and the verification of service compositions.

In spite of these possible applications, only a few similar approaches exist.
Koschmider and Ried [12] present a work that sounds quite similar to the one
we present in this paper: Semantic Annotation of Petri nets. They show how
Petri nets can be expressed in OWL to allow reasoning about their properties.
So they are using Semantic Web technologies to prove properties about the
syntactic structure of the process. Our approach instead extends the syntactic
structure by semantic service annotations and uses known syntactic properties
of the control flow to derive the semantics of the whole composition. In [13] they
apply their formalism to allow for the auto completion of business processes.

Much more similar is the work by Narayanan and McIlraith [14]. They present
an execution semantics for DAML-S (now OWL-S) based on Petri nets. The main
difference to our approach is that they express atomic DAML-S processes (or
services) as Petri nets. Each service consists of several places and transitions
mapping the preconditions and effects to Petri net constructs. In our approach
each service corresponds to exactly one transition in the Petri net. Another
difference is that we define formally how the Petri net is build up from the
atomic services whereas Narayanan and McIlraith only state this informally.
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Many approaches for the automated composition of services exist
[15,16,17,18,19]. They can be seen as related work as their algorithms create
a service composition with a requested functionality. But they all fail to make
this explicit. This gap is filled by this paper.

In the Tools4BPEL project the relationship between Petri nets and service
compositions in general is investigated. This includes the mapping of BPEL
processes to Petri nets [20]. This work can be used to create the Workflow nets
necessary for the presented algorithm.

7 Conclusion

In this paper we presented an approach to calculate the preconditions and effects
of service compositions based on semantics of individual services and a Petri net
representation of the service composition. Using this approach it is now possible
to automatically calculate the preconditions and effects for service compositions.
This allows us to verify the correctness of compositions and their publication as
services. We also introduced a tool that implements the described algorithms.

In the future we want to extend the precondition and effect calculation to
cyclic Workflow nets. To reach this goal, both algorithms need to be adjusted to
detect previously visited markings in the reachability graph. This functionality
can then be used to ensure termination of the algorithm. Additionally, it needs
to be discussed what a cycle or loop means semantically. If the only modifica-
tion to the algorithms is to prevent visiting the same marking multiple times,
the semantics of a composition with loops is equivalent to the semantics of an
identical composition without the backward transition. This is not very useful.

Reasoning about loops only makes sense if service preconditions and effects
are described using first-order logic. Otherwise, multiple runs through the same
loop do not change anything. Therefore, a new reasoner is necessary as the very
simple reasoner currently used is not sufficient for this. So a next step is to
integrate a full-fledged reasoner.
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Abstract. This essay describes fuzzy CARIN, a knowledge representa-
tion language combining fuzzy description logics with Horn rules. Fuzzy
CARIN integrates the management of fuzzy logic into the non-recursive
CARIN system. It provides a sound and complete algorithm for repre-
senting and reasoning about fuzzy ALCNR extended with non-recursive
Horn rules. Such an extension is most useful in realistic applications deal-
ing with uncertainty and imprecision, such as multimedia processing and
medical applications. Additionally, it provides the ability of answering to
union of conjunctive queries, which is a novelty not previously addressed
by fuzzy DL systems.

1 Introduction

Over the last two decades fragments of first order logic, called Description Logics
(DLs) [1], have been brought into focus by the Artificial Intelligence community.
DLs well formed semantics and great expressivity has enforced their utilization
in numerous domains, such as multimedia [2,3,4] and medical [5] applications,
as knowledge representation and reasoning languages. More importantly DLs
provide the formal foundation for the standard web ontology language OWL [6]
which is a milestone for the Semantic Web [7].

DLs main asset, their class-based knowledge representation formalism, also
sets a limit to their expressive power as they are incapable of providing complex
descriptions about role predicates. Expressive DLs such as SHOIQ are inca-
pable of expressing even a simple composition between roles.1 For this reason,
as visualized in the Semantic Web stack diagram,2 there is a need for integrating
DLs with rules. A natural choice for such integration would be classes of rule lan-
guages originating from logic programming and non-monotonic reasoning [10].

In [10], the “cream” of systems combining rules and DLs is presented. Systems
such as DLP [11], SWRL [12], AL-log [13], F -logic [14] and CARIN [15] present
different approximations for intergrading DLs with rules. These are divided into
the hybrid systems, where there is a distinction between the predicates in the
rule and the DL part, and the homogeneous where there is no such distinc-
tion. CARIN is such an hybrid system that combines the DL ALCNR with
1 Recent systems such as EL++ [8], SROIQ [9] are such extensions.
2 http://www.w3.org/2003/Talks/05-gartner-tbl/slide29-0.html
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Horn rules and through its existential entailment algorithm offers a sound and
complete inference procedure for non-recursive knowledge bases, can answer to
arbitrary conjunctive queries and provides an algorithm for rule subsumption
over ALCNR [15].

Though CARIN offers great expressivity in order to represent a fragment of
our universe, it is incapable of encoding knowledge with some degree of uncer-
tainty and imprecision. Uncertainty emerges from our lack of knowledge about a
certain fact e.g. we assume that the black dot in the background of a picture is a
lion, while imprecision refers to the intrinsic inability to strictly classify a fact or
a state of an object e.g. a half-empty glass of water can neither be characterized
as full, nor as empty.

Fuzzy logic is a mean to represent knowledge containing uncertainty and im-
precision. Several systems, such as fuzzy ALC [16], fuzzy fKD − SI [4], fKD-
SHIN [17], have been proposed for combining fuzzy logic with description logics.
Based on these systems we propose fuzzy CARIN, which is an extension of non-
recursive CARIN, in order to represent uncertainty and imprecision. Related
work combining DLs with Rules has been presented in [18,19], providing fuzzy
extensions of DL programs [20].

The need for fuzzy extensions of systems combining DLs with rules is most
obvious in multimedia applications:

Example 1. Suppose that we have a, rather “optimistic”, algorithm for object
recognition. This algorithm is divided into an image processing and a DL ex-
tended with rules part. Assume it contains the following rules and implications:

leaf(x) ∧ nextTo(x, y) ∧ trunk(y) ⇒ tree(x, y)
∃hascolor.green � ∃hascolor.yellow � leafs . . .

The algorithm implies that a tree is an object consisting of leafs and a trunk
and that leafs is an object of either green or yellow color. Obviously an object
described by another shade of green would never have been characterized as being
leafs by a crisp system. That’s where fuzzy logic fits in, allowing assertions of the
form (object : green) ≥ 0.7 that imply an object being green to a certain degree.
As it will be demonstrated this degree plays an important role throughout the
whole reasoning procedure.

The rest of the paper is organized as follows: section 2 provides some preliminary
report on the CARIN system and fuzzy logic, section 2 provides the syntax and
semantics of our system, section 4 describes the inference problems addressed
by our system, section 5 presents a consistency checking algorithm for fuzzy
ALCNR and finally section 6 presents an algorithm for answering to conjunctive
queries and union of conjunctive queries.

2 Preliminaries

2.1 CARIN

The CARIN language combines the DL ALCNR with Horn rules. CARIN’ s
structural elements are concept names, role names, individuals and ordinary
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predicates. Individuals reflect the objects of our universe while concepts and
roles correspond to unary and binary predicates. Ordinary predicates refer to
predicates of any arity that are found only in the ABox and in the Horn rule
component. CARIN enables us to create concept descriptions using the following
constructors:

C, D → A | 	 | ⊥ | C � D | C � D | ¬C | ∀R.C | ∃R.C |≥ nR |≤ nR

where A is a concept name (primitive concept), R is a role name and C, D
denote concept descriptions.

A CARIN knowledge base K consists of an ABox, TBox and a Horn rule
component. The ABox consists of a set of concept, role and ordinary predicate
assertions of the form: C(a), R(a, b) and q(a1, . . . , ak) where q is an ordinary
predicate and a, b, a1, . . . , ak are individuals in K. The TBox is a set of concept
inclusions or definitions of the form C � D, C := D and role definitions P1 �
. . .�Pk ≡ R, where P1, . . . Pk are role names. Finally the Horn rules component
consists of a set of Horn rules of the form p1(X1) ∧ . . . ∧ pk(Xk) ⇒ q(Y ) where
p1, . . . , pk are either concept descriptions, role definitions or ordinary predicates
of the appropriate arity.

The semantics of CARIN are given via interpretations. An interpretation con-
sists of a domain and an interpretation function (ΔI , ·I), where the domain is
a non-empty set of objects and the interpretation function maps: each individ-
ual name a to an object aI ∈ ΔI , each concept name C to a subset of ΔI ,
CI ⊆ ΔI , each role name R to a binary relation RI ⊆ ΔI × ΔI and each
ordinary predicate q to a n-ary relation qI ⊆ ΔI × . . . × ΔI . An interpreta-
tion I satisfies C(a), R(a, b) and q(a1, . . . , ak) if aI ∈ CI , 〈aI , bI〉 ∈ RI and
〈aI1 , . . . , aIk 〉 ∈ qI . TBox axioms C � D, C := D and R := P1 � . . . � Pk

imply that CI ⊆ DI , CI := DI and RI ≡ P I1 ∩ . . . ∩ P Ik . Finally Horn
rules of the form p1(X1) ∧ . . . ∧ pk(Xk) ⇒ q(Y ) imply that for any mapping
ψ : V arsIndivs(X1 ∪ . . . ∪ Xk) → ΔI , if ψ(Xi) ∈ pIi , then ψ(Y ) ∈ qI .

2.2 Fuzzy Sets

Fuzzy set theory and fuzzy logic enables to represent uncertain and imprecise
knowledge [21]. In classical set theory an element x which belongs to the universe
Ω, x ∈ Ω, may or may not belong to a subset A of Ω. This can be represented
by a mapping χA : Ω → {0, 1}, if χA(x) = 1 then x ∈ A else if χA(x) = 0 then
x �∈ A. In fuzzy set theory, a fuzzy subset A of Ω has a mapping μA : Ω → [0, 1]
which means that instead of saying that x ∈ A we can claim that x belongs to
A to a certain degree. Additionally a binary fuzzy relation over two crisp sets
Ω1, Ω2 is a mapping R : Ω1 ×Ω2 → [0, 1] and a n-ary relation q over n crisp sets
Ω1, . . . Ωn is a mapping q : Ω1 × . . . × Ωn → [0, 1].

The classical set theoretical operations of complement, union intersection and
implication are also extended in fuzzy set theory by using triangular norm op-
erations [21]. Because of the difficulty of extending DLs with arbitrary fuzzy set
operations our system uses some standard norm operations [16]. These norms
are: the Lukasiewicz negation c(a) = 1− a, the Gödel t− norm for conjunction,
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t(a, b) = min(a, b), the Gödel t-conorm for disjunction u(a, b) = max(a, b) and
the Kleene-Dienes fuzzy implication, J(a, b) = max(1 − a, b).

3 The Language of Fuzzy Carin

As stated, non recursive fuzzy CARIN is a language, which combines the de-
scription logic fuzzy ALCNR with non recursive Horn Rules. A fuzzy CARIN
knowledge base K is composed of three components K = 〈T ,H,A〉, a DL termi-
nology component T also called a TBox, a Horn rules component H and a ground
facts component A also called an ABox. In the syntax and semantics that we
propose, we consider that fuzziness exists only in the ground facts component.

3.1 Syntax

Fuzzy CARIN’s structural elements are a set of individuals I, an alphabet of
concept names C, role names R and ordinary predicate names Q. Elements of
I represent the objects in our universe, while C and R correspond to unary and
binary fuzzy relationships between individuals in I. Elements of Q correspond
to relationships, between individuals, of any arity.

Terminological component in fuzzy CARIN: The fuzzy CARIN terminological
component T has the same syntax as the crisp. Complex concepts are built
from concept and role names using the constructors of ALCNR as described in
Equation 1 where A is a concept name, C and D are concept descriptions and
R is a role definition.

C, D −→ A | 	 | ⊥ | C�D | C�D | ¬C | ∀R.C | ∃R.C | (≥ m R) | (≤ m R) (1)

The TBox contains concept definitions A := D, concept inclusions C � D and
role definitions of the form R := P1 � . . . � Pk, where Pis are role names.3

Horn rules in fuzzy CARIN: The Horn rule component H of a fuzzy CARIN
knowledge base K contains a set of Horn rules that are logical sentences of the
form:

p1(X1) ∧ . . . ∧ pk(Xk) ⇒ q(Y ) (2)

where X1, · · · , Xk and Y are tuples of variables and individuals and p1, · · · pk

may be concept names, roles or ordinary predicates while q is always an ordinary
predicate. The antecedents of a Horn rule are called its body and the consequents
are called its head.

Fuzzy as well as the classic CARIN are, as stated before, hybrid systems,
which means that there is a clear distinction between their DL and Horn rule
part. For this reason ordinary predicates are defined as predicates of any arity
that locate only in H and A and cannot be part of a concept description, even
if they are unary or binary predicates. Additionally in order to have a sound
and complete algorithm, variables located in Y must also be located in one of
the Xi’s and only non-recursive Horn rules are adopted. A set of rules is said
3 In some bibliography role definitions may be a part of an RBox R instead of a TBox.
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to be recursive if there is a cycle in the dependency relation among ordinary
predicates, i.e an ordinary predicate q depends on a predicate p when p appears
in the body of a rule whose head is q and dependency is a transitive relation.

Ground fact component: The ground fact component A of a fuzzy CARIN
knowledge base contains a set of fuzzy assertions as shown in table 1:

Table 1. Fuzzy CARIN assertions

(a : C) �� n
where a ∈ I, ��∈ {�, >, �, <}, n ∈ [0, 1] and C is a concept
description

(〈a, b〉 : R) � n where a, b ∈ I, � ∈ {�, >}, n ∈ [0, 1] and R is a role name

(a : p) � n
where a is a tuple of individuals, � ∈ {�, >}, n ∈ [0, 1] and p is
an ordinary predicate of any arity.

Intuitively a fuzzy assertion of the form (weather : cloudy) � 0.5 means that
the weather is cloudy with a degree at least equal to 0.5. We call assertions
defined by �, > positive assertions, denoted with �, while those defined by �, <
negative assertions, denoted with �. �� stands for any type of inequality. In fuzzy
CARIN, we consider only positive role assertion, since negative assertions would
imply the existence of role negation and union of roles in ALCNR, which would
lead to undecidability. Similarly for ordinary predicates we use only positive
assertions since negation cannot be expressed in simple Horn Rules.

3.2 Semantics

The semantics of the terminological component are given via fuzzy interpreta-
tions which use membership functions that range over the interval [0, 1]. A fuzzy
interpretation is a pair I = 〈ΔI

, ·I〉, where the domain ΔI is a non empty set
of objects and ·I is a fuzzy interpretation function, which maps:

1. An individual name a ∈ I to an element aI ∈ ΔI ,
2. A concept name A ∈ C to a membership function AI : ΔI → [0, 1],
3. A role name R ∈ R to a membership function RI : ΔI × ΔI → [0, 1],
4. An ordinary predicate q ∈ Q of l-arity to a membership function qI :

ΔI × . . . × ΔI
︸ ︷︷ ︸

l

→ [0, 1],

5. Finally, we make the unique names assumption, i.e. for each tuple of elements
a, b ∈ I, aI � .= bI holds.

The semantics of concept descriptions are given by the equations in table 2
where a, b ∈ ΔI and C,D are concept descriptions, R is a role description and
A is a concept name. Terminological component satisfiability: An interpretation
I satisfies the terminological component T , iff

– ∀a ∈ ΔI , CI(a) � DI(a) for each concept inclusion axiom C � D in T ,
– ∀a ∈ ΔI , CI(a) = DI(a) for each concept definition axiom C := D in T ,
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Table 2. Semantics

Syntax Semantics

A AI(a) = n where n ∈ [0, 1]

� �I(a) = 1

⊥ ⊥I(a) = 0

¬C (¬C)I(a) = 1 − CI(a)

C � D (C � D)I(a) = min(CI(a),DI(a))

C � D (C � D)I(a) = max(CI(a),DI(a))

∀R.C (∀R.C)I(a) = infb∈ΔI{max(1 − RI(a, b), CI(b))}
∃R.C (∃R.C)I(a) = supb∈ΔI{min(RI(a, b), CI(b))}
(≥ m R) (≥ mR)I(a) = supb1,··· ,bm∈ΔI minm

i=1{RI(a, bi)}
(≤ m R) (≤ mR)I(a) = infb1,··· ,bm+1∈ΔI maxm+1

i=1 {1 − RI(a, bi)}

– ∀a, b ∈ ΔI , min(P I1 (a, b), . . . , P Ik (a, b)) = RI(a, b) for each role definition ax-
iom P1 � . . . � Pk := R in T .

Horn rule satisfiability: An interpretation I satisfies a Horn rule p1(X1) ∧
. . . ∧ pk(Xk) ⇒ q(Y ) iff for every mapping ψ from the variables and individuals
of X1, . . . , Xk, Y to the objects of ΔI , where each individual a is mapped to aI ,
min

(
pI1 (ψ(X1)), . . . , pIk (ψ(Xk))

) ≤ q(ψ(Y )) holds. The Horn rule component is
satisfied iff all rules in it are satisfied.
Ground fact component satisfiability: A fuzzy interpretation satisfies the ground
fact component A iff it satisfies all fuzzy assertions in A as described in
table 3. In this case we say I is a model of A and it is denoted as I |= A.
If A has a model we then say that it is consistent.

Table 3. Fuzzy assertion satisfiability

I satisfies iff

(a : C) �� n CI(aI) �� n

(〈a, b〉 : R � n) RI(aI , bI) � n
(〈a1, . . . , ak〉 : q � n) qI(a1

I , . . . , ak
I) � n

In fuzzy CARIN we consider that each concept assertion is in its positive
inequality formal, negation normal, normalized form i.e. only concept assertions
of the form (a : C) ≥ n are allowed, where C is in its negation normal form. The
same applies for role and ordinary predicate assertions.

Negative assertions can be converted to their Positive Inequality Normal Form
(PINF) by applying the fuzzy complement in both sides of the inequality as
described in [22]. For example (a : C) ≤ n and (a : C) < n are being transformed
into (a : ¬C) ≥ 1 − n and (a : ¬C) > 1 − n.

We also assume that all concepts are in their Negation Normal Form. A con-
cept can be transformed into its NNF by pushing negation inwards making use
of the following concept equivalences [16,17]:
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¬(C � D) ≡ (¬C � ¬D) ¬(C � D) ≡ (¬C � ¬D)
¬∃R.C ≡ ∀R.(¬C) ¬∀R.C ≡ ∃R.(¬C)
¬ ≥ p1R ≡ ≤ (p1 − 1)R ¬ ≤ p2R ≡ ≥ (p2 + 1)R
¬¬C = C

where p1 ∈ N
∗ and p2 ∈ N in the above equations.

Normalized assertions, are assertions where > is eliminated with ≥. This can
be achieved by introducing a positive, infinitely small value ε which, from an
analysis point of view, would be equal to 0+. Following [23] each concept assertion
a : C > n is normalized to a : C ≥ n + ε. The same kind of normalization holds
for role and ordinary predicate assertions. It has been proven in [23] that each
model I of K is also a model of K’s normalized form and vice versa.

Finally following [17] a conjugated pair of fuzzy assertions is a pair of asser-
tions whose semantics are contradicted. If φ represents a crisp concept assertion
and ¬φ its negation (e.g. if φ ≡ a : C then ¬φ ≡ a : ¬C ) the instances of
conjugated pairs are seen in table 4. An ABox A with a conjugated pair of fuzzy
assertions has no model I.

Table 4. Conjugated pairs of fuzzy assertions

¬φ > m ¬φ ≥ m

φ ≥ n n + m ≥ 1 n + m > 1

φ > n n + m ≥ 1 n + m ≥ 1

Knowledge base satisfiability: An ABox A is consistent w.r.t. a TBox T and a
Horn rules component H if it has a model, I |= A, that satisfies every concept,
role inclusion and definition in T as well as each Horn rule in H. A knowledge
base K = 〈A, T ,H〉 is satisfiable when there exists such a model I which is
called a model of a knowledge base K and denoted as I |= K.

4 Reasoning

The most common inference problems addressed by previous fuzzy DL sys-
tems are the satisfiability, n-satisfiability, subsumption and the entailment prob-
lem [16]. It has been proven in [16,17] that each one of the previous problems
can be reduced to the problem of a knowledge base satisfiability.

Another kind of inference problem interwoven with relational databases is the
conjunctive query answering problem. Following [24] we present the definition
of the conjunctive query problem for fuzzy DLs.

Definition 1 (Conjunctive Query). A conjunctive query (CQ) over a knowl-
edge base K is a set of atoms of the form

CQ = {p1(Y 1) � n1 ∧ . . . ∧ pk(Y k) � nk}
where p1, . . . , pk are either concept names in C, role names in R or ordinary
predicates in Q and Y 1, . . . , Y k are tuples of variables and individuals in I match-
ing each pi’s arity.
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Similarly to assertions, conjunctive queries are also transformed to their normal-
ized form by substituting each pi(Y i) > ni in CQ with pi(Y i) ≥ ni + ε.

Definition 2 (Union of Conjunctive Queries). A union of conjunctive
queries (UCQ) over a knowledge base K is a set of conjunctive queries:

UCQ = {Q1, . . . , Ql}
where Qi is a CQ for each 1 ≤ i ≤ l.

To say that Q is either a CQ or an UCQ, we simply say that Q is a query. We
denote by varsIndivs(Q) the set of variables and individuals in a query Q, by
vars(Q) the set of variables in Q and by Indivs(Q) the set of individuals in Q.

Queries are interpreted in the standard way. For a CQ, we say that I models
CQ, I |= CQ, iff there exists a mapping σ : varsIndivs(CQ) → ΔI such that
σ(a) = aI for each a ∈ Indivs(CQ) and pIi (σ(Yi)) ≥ n for each p(Yi) ≥ n in CQ.
For a union of conjunctive queries UCQ = {Q1, . . . , Ql}, I |= UCQ iff I |= Qi

for some Qi ∈ UCQ. For a knowledge base K and a query Q, we say that K
entails Q, denoted K |= Q, iff I |= Q for each model I of K.

Definition 3 (Query Entailment). Let K be a knowledge base and Q a query.
The query entailment problem is to decide whether K |= Q.

It is important to notice that the query entailment, contrary to the entailment
problem, cannot be reduced to consistency checking, since the negation of a query
cannot be expressed as part of a knowledge base. For this reason consistency
checking does not suffice for answering to conjunctive queries.

5 Consistency Checking for Fuzzy CARIN

To say that K |= Q it has to hold that I |= Q for each model I of K. Instead
of checking an infinite number of interpretations I satisfying K, our algorithm
checks a finite number of completion forests. A completion forest F is an ab-
straction of an interpretation I and in most tableaux algorithms a complete and
clash free F is the proof of the existence of a model of K. In 5.1 we provide an
algorithm for consistency checking in ALCNR and based on this algorithm the
conjunctive query answering problem is solved as described in 6.

5.1 ALCNR Completion Forests

The completion forest introduced is based on the completion forest presented
in [15]. As in [15] the application of the expansion rules for the completion for-
est could lead to an arbitrary number of nodes due to the existence of cyclic
concept inclusions. In order to ensure the termination of the expansion rules a
blocking condition should be adopted. Contrary to the simple blocking condi-
tion embraced by ALCNR [25] our algorithm adopts the q-blocking condition,
introduced in [15], in order to cope with union of conjunctive queries. In the
next paragraphs the notions of completion forest, q-blocking and the expansion
rules are explained in detail.
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Definition 4 (Completion Tree). A completion tree for fuzzy ALCNR is a
tree, all nodes of which are variables, except from the root node which might
be an individual. Each node x is labelled with a set L(x) = {〈C,≥, n〉}, where
C ∈ sub(K) and n ∈ [0, 1]. Each edge is labelled with a set L(x, y) = {〈R,≥, n〉},
where R ∈ R are roles occurring in K.

(Completion Forest). A completion forest F is a collection of trees whose roots,
which correspond to individuals, are arbitrarily connected by arcs. As before,
edges between root nodes are labelled with the set L(x, y) = {〈R,≥, n〉}, where
R ∈ R.

In the previous definition sub(K) denotes the set of concepts occurring in K
along with their sub-concepts.

Example 2. In Figure 1 we see a completion forest for fuzzy ALCNR where
r1, r2 correspond to root nodes while o1, . . . , o8 are variable nodes created by
node generating rules. Each node must be labelled with a set of concepts with
degrees and each edge must be labelled with a set of roles with degrees. In this
example only nodes r1, o1 and edges 〈r1, o1〉, 〈r1, r2〉 are labelled due to space
limitations.

L(r1, r2) = {〈R1 ≥ 0.4〉}

r1

o1

L(r1, o1) = {〈R2 ≥ 0.3〉}

L(o1) = {〈Co11 � 0.3〉 . . .} o2

o3 o4

L(r1) = {〈Cr11 ≥ 0.3〉, . . . , 〈Cr1k � 0.3〉} r2

o5

o6 o7

o8

Fig. 1. A fuzzy ALCNR completion forest

Definition 5 (nodes, vars, R-successor,successor,descendant). For a
completion forest F : (i) nodes(F) denotes the set of nodes in F , (ii) vars(F) de-
notes the set of variable nodes in F , (iii) υ is an R≥n-successor of w when nodes
υ and w are connected by an edge 〈υ, w〉 with {〈P1,≥, n1〉, . . . , 〈Pk,≥, nk〉} ⊆
L(〈x, y〉), R := P1 � . . . � Pk and min(n1, . . . , nk) ≥ n , (iv) υ is a successor of
w, when υ is an R≥n-successor of w with n > 0, (v) descendent is the transitive
closure of successor.

Example 3. In figure 1, o1 is a R2≥0.3 successor of r1.

Definition 6 (q-tree equivalence). The q-tree of a variable υ is the tree that
includes the node υ and its successors, whose distance from υ is at most q direct-
successors arcs. We denote the set of nodes in the q-tree of υ by Vq(υ). Two nodes
υ, w ∈ F are said to be q-tree equivalent in F if there exists an isomorphism
ψ : Vq(υ) → Vq(w) such that (i) ψ(υ) = w, (ii) for every s ∈ Vq(υ), 〈C,≥, n〉 ∈
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L(s) iff 〈C,≥, n〉 ∈ L(ψ(s)) (iii) for every s, t ∈ Vq(υ), 〈R,≥, n〉 ∈ L(〈s, t〉) iff
〈R,≥, n〉 ∈ L(〈ψ(s), ψ(t)〉). Intuitively, two variables are q-tree equivalent if the
trees of depth q of which they are roots are isomorphic.

Definition 7 (q-Witness). A node υ is the q-witness of a node w when (i) υ
is an ancestor of w, (ii) υ and w are q-tree equivalent, (iii) w �∈ Vn(υ).

Definition 8 (q-blocking). A node x is q-blocked when it is the leaf of a q-tree
in F whose root w has a q-witness υ and w ∈ vars(F) or when L(x) = ∅.

Example 4. In Figure 2 o1 is a 1-witness of o4, since the 1-tree of o1 is equivalent
of the 1-tree of o4 because L(o1) = L(o4), L(o2) = L(o5), L(o3) = L(o6) and
L(o1, o2) = L(o4, o5), L(o1, o3) = L(o4, o6). For this reason o5 is blocked by o2

and o3 is blocked by o6.

r1

o1

o2

L(o1, o2) = {〈R2 ≥ 0.3〉}

L(o2) = {〈CB ≥ 0.5〉} o3

L(o1, o3) = {〈R2 ≥ 0.3〉}

o4

o5 L(o5) = {〈CB ≥ 0.5〉}

L(o4, o5) = {〈R2 ≥ 0.3〉}

o6 L(o6) = {〈CC ≥ 0.7〉}

L(o4, o6) = {〈R2 ≥ 0.3〉}

L(o4) = {〈CA � 0.2〉}

L(o3) = {〈CC ≥ 0.7〉}

L(o1) = {〈CA � 0.2〉} o8

Fig. 2. Blocking Example

Definition 9 (Clash free completion forest). For a node x, L(x) contains
a clash if it contains: (i) A conjugated pair of triples. Conjugated pairs of triples
are identical to conjugated pairs of fuzzy assertions described in table 4, (ii) one
of the triples 〈⊥, �, n〉, with n > 0, or 〈C,≥, n〉 with n > 1, or (iii) some triple
〈� pR,≥, n〉, x has p + 1 R≥n′-successors y0, . . . , yp, with n′ = 1 − n + ε and
yi �= yj for all 0 ≤ i < j ≤ p. A completion forest F is clash free if none of its
nodes contains a clash.

For an ALCNR ABox A, the algorithm initializes a completion forest FK to
contain (i) a root node xi

0, for each individual ai ∈ I in A, labelled with L(xi
0)

such that {〈Ci,≥, n〉} ⊆ L(xi
0) for each assertion of the form (ai : Ci) ≥ n ∈ A,

(ii) an edge 〈xi
0, x

j
0〉, for each assertion (〈ai, aj〉 : Ri) ≥ n ∈ A, labelled with

L(〈xi
0, x

j
0〉) such that {〈Ri,≥ n〉} ⊆ L(〈xi

0, x
j
0〉), (iii) the relation � .= as xi

0 � .= xj
0

for each two different individuals ai, aj ∈ I and the relation .= to be empty. F is
expanded by repeatedly applying the completion rules from table 5.

In table 5 rules �≥, �≥, ∃≥, ∀≥ are first introduced in [16] and then modi-
fied for completion forests in [4], rules ≥≥ and ≤≥ are presented in [17], while rule
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Table 5. Tableaux expansion rules for fuzzy ALCNR

Rule Description

�≥
if 1. 〈C1 � C2,≥, n〉 ∈ L(x), x is not blocked,

2. {〈C1,≥, n〉, 〈C2,≥, n〉} ⊆ L(x)
then L(x) → L(x) ∪ {〈C1,≥, n〉, 〈C2,≥, n〉}

�≥
if 1. 〈C1 � C2,≥, n〉 ∈ L(x), x is not blocked,

2. {〈C1,≥, n〉, 〈C2,≥, n〉} ∩ L(x) = ∅
then L(x) → L(x) ∪ {C} for some C ∈ {〈C1,≥, n〉, 〈C2,≥, n〉}

∃≥
if 1. 〈∃R.C,≥, n〉 ∈ L(x), x is not blocked,

2. x has no R≥n-successor y with 〈C,≥, n〉 ∈ L(y)
then create a new node y with L(〈x, y〉) = {〈R,≥, n〉}, L(y) = {〈C,≥, n〉}

∀≥
if 1. 〈∀R.C,≥, n〉 ∈ L(x), x is not blocked,

2. x has an R≥n′ -successor y with n′ = 1 − n + ε
then L(y) → L(y) ∪ {〈C,≥, n〉}

≥≥

if 1. 〈≥ mR,≥, n〉 ∈ L(x), x is not blocked,
2. there are no m R≥n-successors y1, . . . , yp of x
3. with yi = yj for 1 ≤ i < j ≤ m

then create m new nodes y1, . . . , ym, with L(〈x, yi〉) = {〈R,≥, n} and
yi = yj for 1 ≤ i < j ≤ m

≤≥

if 1. 〈≤ mR,≥, n〉 ∈ L(x), x is not blocked,
2. there are more then m R≥n′ -successors of x with n′ = 1 − n + ε and

there are two of them y, z, with no y  .= z,
3. y is not a root node

then (a) L(z) → L(z) ∪ L(y)
(b) L(〈x, z〉) → L(〈x, z〉) ∪ L(〈x, y〉)
(c) L(〈x, y〉) → ∅, L(y) → ∅
(d) Set u  .= z for all u with u  .= y

�

if 1. C � D ∈ T and
2. {〈¬C,≥, 1 − n + ε〉, 〈D,≥, n〉} ∩ L(x) = ∅ for n ∈ NA a

then L(x) → L(x) ∪ {E} for some E ∈ {〈¬C,≥, 1 − n + ε〉, 〈D, �, n〉}
a NA denotes the set of degrees in ABox assertions as well as the set of

degrees in conjunctive queries.

� is first introduced in [23]. The ≤r≥ presented in [17] cannot be applied, since
aI � .= bI holds for every pair of individuals a, b ∈ I.

Definition 10 (q-complete completion forest). We denote by FK the set of
completion forests F obtained by applying the expansion rules in table 5 to FK.
A completion forest F is q-complete when none of the rules in table 5 can be
applied to it. We denote by ccf(Fq

K) the set of completion forests in FK that are
q-complete and clash free.

It can be proven that each F ∈ ccf(Fq
K) can be mapped to a model I of K

and vice versa (detailed proofs can be found in [17]). In section 6 we show how
the set ccf(Fq

K) can be exploited in order to answer to unions of conjunctive
queries.
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6 Union of Conjunctive Queries

In this section we will introduce an algorithm for answering to union of conjunc-
tive queries over an ALCNR knowledge base K, where we exam the finite set
of clash free completion forests ccf(F |Q|

K
). Our algorithm is first presented for

union of conjunctive queries free of ordinary predicates (6.1) and then extended
for query answering with ordinary predicates (6.2).

6.1 Answering to Conjunctive Queries Without Ordinary
Predicates

In order to have a complete algorithm for answering to conjunctive queries we
must add to our TBox the rule C � C for each concept name C appearing in a
conjunctive query. This ensures that in each completion forest either (x : C) ≥ n
or (x : C) < n 4 holds and consequently it can be checked if a node can be
mapped to a variable of our conjunctive query.

Additionally we have to show why q-blocking is adopted instead of simple
blocking. A conjunctive query CQ as presented in definition 1 can be mapped
to a graph GCQ whose nodes correspond to variables and individuals, each node
is labelled with a set L(x) = {〈C,≥, n〉} and each edge is labelled with a set
L(x, y) = {〈R,≥, n〉} where C and R are concepts and roles in CQ. Suppose
that dxy is the length of the lengthiest acyclic path between nodes x and y, we
define |CQ| to be the maximum dxy between the set of pairs of connected nodes
in CQ. Naturally we deduce that a conjunctive query CQ cannot be mapped to
a subtree of a completion forest F that has more than |CQ| arcs height. The
|CQ|-blocking condition ensures that a possible mapping from CQ to F wont
be blocked. In case of a union of conjunctive queries UCQ we will consider that
|UCQ| coincidents with the value of the maximum |CQ|.
Example 5. The conjunctive query:

CQ =

⎧
⎨

⎩

friend(John, x) ≥ 0.3, tall(x) ≥ 0.7,
likes(x, Mary) ≥ 0.2, friend(John, y) ≥ 0.6,
hates(y, Mary) ≥ 0.8, loves(z, w) ≥ 0.4

⎫
⎬

⎭
5

is represented by the graph in figure 3. For this conjunctive query |CQ| = 2.

Definition 11. Suppose we have a query Q = C1(x1) ≥ n1 ∧ . . . ∧ Ck(xk) ≥
nk∧R1(y1, z1) ≥ nk+1∧ . . .∧Rl(yl, zl) ≥ nk+l. For a completion forest F we say
that Q ↪→ F iff there exists a mapping σ : varsIndivs(Q) → nodes(F) such that
{〈Ci,≥, ni〉} ∈ L(σ(xi)) and σ(yj) is an R≥nj -successor of σ(zj) for each 1 ≤
i ≤ k and k+1 ≤ j ≤ l. For a union of conjunctive queries UCQ = {Q1, . . . , Ql}
we say that UCQ ↪→ F iff Qi ↪→ F for some Qi ∈ UCQ.

It can be proven that if a mapping Q ↪→ F exists for each F ∈ ccf(F |Q|
K

), then
K |= Q.
4 (a : ¬C) > 1 − n + ε is its PINF, normalized form.
5 Here we claim that someone may like, hate, love or be a friend of someone else at

certain degree.
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x {〈tall,≥, 0.7〉 . . .}

{...} John Mary {. . . }

y

{. . . } z w {. . . }

{〈friend,≥, 0.3〉, . . .}

{〈friend,≥, 0.6〉, . . .}

{〈likes,≥, 0.2〉, . . .}

{〈hates,≥, 0.8〉, . . .}

{〈loves,≥, 0.7〉, . . .}

Fig. 3. Conjunctive query mapped to a graph

6.2 Answering to Conjunctive Queries with Ordinary Predicates

Initially, we will consider conjunctive queries containing no assertions about
ordinary predicates, in such a case it holds:

Proposition 1. Suppose that we have a conjunctive query of the form Q =
{p1 ≥ n1 ∧ . . .∧ pk ≥ nk ∧ . . .∧ pm ≥ nm} and a set of Horn Rules related to pk:

Hpk
=

⎧
⎪⎨

⎪⎩

pk ← p11 ∧ . . . ∧ p1l1 ,
...

pk ← pm1 ∧ . . . ∧ pmlm

⎫
⎪⎬

⎪⎭

Q can be replaced with a union of conjunctive queries UCQ = {Q1, . . . , Qm}
where in each Qj, pk ≥ nk is replaced with pk1 ≥ mk ∧ . . . ∧ pklk

≥ mk.

Fuzzy assertions about ordinary predicates can be introduced by the use of
pseudo-roles and pseudo-concepts. For example an assertion about an ordinary
predicate q(a1, . . . , am) ≥ n can be substituted by a set of role assertions Aq =
{Rq1(a1, a2) ≥ n, . . . , Rq(m−1)(am−1, am) ≥ n} and a Horn rule q ← Rq1 ∧ . . . ∧
Rq(m−1). In such a case conjunctive queries and union of conjunctive queries can
be recurrently stretched to union of conjunctive queries containing only concepts
and roles (pseudo or not) since only acyclic Horn Rules are allowed in H. So the
problem is reduced to the problem described in section 6.1.

7 Conclusions

Till now we have presented the integration of fuzzy logic, description logics and
Horn rules, into fuzzy CARIN. The acquired system matches the benefits of its
ancestors, providing a very expressive language for handling uncertainty and
imprecision, with the counterweight of its high complexity, resulting from the
high complexity of its structural elements. Future directions concern the study of
fuzzy CARIN’s complexity and its extension with more expressive DLs (a guide
towards that direction is provided in [24]). It should also be extended to answer
to other kind of inference problems, originating from the fuzzy DL domain, such
as glb queries [16].
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Abstract. In the ongoing discussion about combining rules and Ontologies on
the Semantic Web a recurring issue is how to combine first-order classical logic
with nonmonotonic rule languages. Whereas several modular approaches to de-
fine a combined semantics for such hybrid knowledge bases focus mainly on
decidability issues, we tackle the matter from a more general point of view. In
this paper we show how Quantified Equilibrium Logic (QEL) can function as
a unified framework which embraces classical logic as well as disjunctive logic
programs under the (open) answer set semantics. In the proposed variant of QEL
we relax the unique names assumption, which was present in earlier versions
of QEL. Moreover, we show that this framework elegantly captures the existing
modular approaches for hybrid knowledge bases in a unified way.

1 Introduction

In the current discussions on the Semantic Web architecture a recurring issue is how to
combine a first-order classical theory formalising an ontology with a nonmonotonic rule
base. In this context, nonmonotonic rule languages have received considerable attention
and achieved maturity over the last few years due to the success of Answer Set Program-
ming (ASP), a nonmonotonic, purely declarative logic programming and knowledge
representation paradigm with many useful features such as aggregates, weak constraints
and priorities, supported by efficient implementations (for an overview see [1]). As a
logical foundation for the answer set semantics and a tool for logical analysis in ASP,
the system of Equilibrium Logic was presented in [14] and further developed in subse-
quent works (see [15] for an overview and references). We will show how Equilibrium
Logic can be used as a logical foundation for the combination of ASP and Ontologies.

In the quest to provide a formal underpinning for a nonmonotonic rules layer for
the Semantic Web which can coexist in a semantically well-defined manner with the
Ontology layer, various proposals for combining classical first-order logic with differ-
ent variants of ASP have been presented in the literature.1 We distinguish three kinds
� This research has been partially supported by the Spanish MEC under the projects TIC-2003-

9001, TIN2006-15455-CO3 and the Acción Integrada “Formal Techniques for Reasoning
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1 Most of these approaches focus on the Description Logics fragments of first-order logic un-
derlying the Web Ontology Language OWL.
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of approaches: At the one end of the spectrum there are approaches which provide an
entailment-based query interface to the Ontology in the bodies of ASP rules, resulting in
a loose integration (e.g. [5,4]). At the other end there are approaches which use a unify-
ing nonmonotonic formalism to embed both the Ontology and the rule base (e.g. [2,13]),
resulting in a tight coupling. Hybrid approaches (e.g. [18,19,20,9]) fall between these
extremes. Common to hybrid approaches is the definition of a modular semantics based
on classical first-order models, on the one hand, and stable models, on the other hand.
Additionally, they require several syntactical restrictions on the use of classical predi-
cates within rules. With further restrictions of the classical part to decidable Description
Logics (DLs), these semantics support straightforward implementation using existing
DL reasoners and ASP engines, in a modular fashion. In this paper, we focus on such
hybrid approaches.

Example 1. Consider a hybrid knowledge base consisting of a classical theory T :

∀x.PERSON(x) → (AGENT (x) ∧ (∃y.HAS-MOTHER(x, y)))
∀x.(∃y.HAS-MOTHER(x, y)) → ANIMAL(x)

which says that every PERSON is an AGENT and has some (unknown) mother, and
everyone who has a mother is an ANIMAL, and a nonmonotonic logic program P :

PERSON(x) ← AGENT (x),¬machine(x)
AGENT (DaveB)

which says that AGENT s are by default PERSONs, unless known to be machines,
and DaveB is an AGENT .

Using a hybrid knowledge base which includes both T and P , we intuitively would
conclude PERSON(DaveB) since he is not known to be a machine, further that
DaveB has some (unknown) mother, and thus ANIMAL(DaveB).

We see two important shortcomings in current hybrid approaches:

(1) Current approaches to hybrid knowledge bases differ not only in terms of syntactic
restrictions, motivated by decidability considerations, but also in the way they deal with
more fundamental issues which arise when classical logic meets ASP, such as the do-
main closure and unique names assumptions.2 In particular, current proposals implicitly
deal with these issues by either restricting the allowed models of the classical theory, or
by using variants of the traditional answer set semantics which cater for open domains
and non-unique names. So far, little effort has been spent in a comparing the approaches
from a more general perspective.
(2) The semantics of current hybrid knowledge bases is defined in a modular fashion.
This has the important advantage that algorithms for reasoning with this combination
can be based on existing algorithms for DL and ASP satisfiability. A single underly-
ing logic for hybrid knowledge bases which, for example, allows to capture notions of
equivalence between combined knowledge bases in a standard way, is lacking though.

Our main contribution with this paper is twofold. First, we survey and compare dif-
ferent (extensions of the) answer set semantics, as well as the existing approaches to hy-
brid knowledge bases. Second, we propose to use Quantified Equilibrium Logic (QEL)

2 See [3] for a more in-depth discussion of these issues.
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as a unified logical foundation for hybrid knowledge bases: As it turns out, the equi-
librium models of the combined knowledge base coincide exactly with the modular
nonmonotonic models for all approaches we are aware of [18,19,20,9].

The remainder of this paper is structured as follows: Section 2 recalls some basics of
classical first-order logic. Section 3 reformulates different variants of the answer set se-
mantics introduced in the literature using a common notation and points out correspon-
dences and discrepancies between these variants. Next, definitions of hybrid knowledge
bases from the literature are compared and generalised in Section 4. QEL and its rela-
tion to the different variants of ASP are clarified in Section 5. Section 6 describes an
embedding of hybrid knowledge bases into QEL and establishes the correspondence
between equilibrium models and nonmonotonic models of hybrid KBs. Implications of
our results and further work are discussed in the concluding Sections 6.1, 6.2, and 7.

2 First-Order Logic (FOL)

A function-free first-order language L = 〈C, P 〉 with equality consists of disjoint sets
of constant and predicate symbols C and P . Moreover, we assume a fixed countably
infinite set of variables, the symbols ‘→’, ‘∨’, ‘∧’, ‘¬’, ‘∃’, ‘∀’, and auxiliary paren-
theses ‘(’,‘)’. Each predicate symbol p ∈ P has an assigned arity ar(p). Atoms and
formulas are constructed as usual. Closed formulas, or sentences, are those where each
variable is bound by some quantifier. A theory T is a set of sentences. Variable-free
atoms, formulas, or theories are also called ground. If D is a non-empty set, we denote
by AtD(C, P ) the set of ground atoms constructible from L′ = 〈C ∪ D, P 〉.

Given a first-order language L, an L-structure consists of a pair I = 〈U, I〉, where
the universe U = (D, σ) (sometimes called pre-interpretation) consists of a non-empty
domain D and a function σ : C∪D → D which assigns a domain value to each constant
such that σ(d) = d for every d ∈ D. For tuples we write σ(t) = (σ(d1), . . . , σ(dn)).
We call d ∈ D an unnamed individual if there is no c ∈ C such that σ(c) = d.
The function I assigns a relation pI ⊆ Dn to each n-ary predicate symbol p ∈ P
and is called the L-interpretation over D . The designated binary predicate symbol eq,
occasionally written ‘=’ in infix notation, is assumed to be associated with the fixed
interpretation function eqI = {(d, d) | d ∈ D}. If I is an L′-structure we denote by
I|L the restriction of I to a sublanguage L ⊆ L′.

An L-structure I = 〈U, I〉 satisfies an atom p(d1, . . . , dn) of AtD(C, P ), written
I |= p(d1, . . . , dn), iff (σ(d1), . . . , σ(dn)) ∈ pI . This is extended as usual to sentences
and theories. I is a model of an atom (sentence, theory, respectively) ϕ, written I |= ϕ,
if it satisfies ϕ. A theory T entails a sentence ϕ, written T |= ϕ, if every model of T is
also a model of ϕ. A theory is consistent if it has a model.

In the context of logic programs, the following assumptions often play a role: We say
that the parameter names assumption (PNA) applies in case σ is surjective, i.e., there
are no unnamed individuals in D; the unique names assumption (UNA) applies in case
σ is injective; in case both the PNA and UNA apply, the standard names assumption
(SNA) applies, i.e. σ is a bijection. In the following, we will speak about PNA-, UNA-,
or SNA-structures, (or PNA-, UNA-, or SNA-models, respectively), depending on σ.
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An L-interpretation I over D can be seen as a subset of AtD(C, P ). So, we can
define a subset relation for L-structures I1 = 〈(D, σ1), I1〉 and I2 = 〈(D, σ2), I2〉
over the same domain by setting I1 ⊆ I2 if I1 ⊆ I2.3 Whenever we speak about subset
minimality of models/structures in the following, we thus mean minimality among all
models/structures over the same domain.

3 Answer Set Semantics

In this paper we assume non-ground disjunctive logic programs with negation allowed
in rule heads and bodies, interpreted under the answer set semantics [12].4 A program
P consists of a set of rules of the form

a1 ∨ a2 ∨ . . . ∨ ak ∨ ¬ak+1 ∨ . . . ∨ ¬al ← b1, . . . , bm,¬bm+1, . . . ,¬bn (1)

where ai (i ∈ {1, . . . , l}) and bj (j ∈ {1, . . . , n}) are atoms, called head (body, respec-
tively) atoms of the rule, in a function-free first-order language L = 〈C, P 〉 without
equality. By CP ⊆ C we denote the set of constants which appear in P . A rule with
k = l and m = n is called positive. Rules where each variable appears in b1, . . . , bm

are called safe. A program is positive (safe) if all its rules are positive (safe).
For the purposes of this paper, we give a slightly generalised definition of the com-

mon notion of the grounding of a program: The grounding grU (P) of P wrt. a uni-
verse U = (D, σ) denotes the set of all rules obtained as follows: For r ∈ P , replace
(i) each constant c appearing in r with σ(c) and (ii) each variable with some element in
D. Observe that thus grU (P) is a ground program over the atoms in AtD(C, P ).

For a ground program P and first-order structure I the reduct PI consists of rules

a1 ∨ a2 ∨ . . . ∨ ak ← b1, . . . , bm

obtained from all rules of the form (1) in P for which hold that I |= ai for all k < i ≤ l
and I �|= bj for all m < j ≤ n.

Answer set semantics is usually defined in terms of Herbrand structures over L =
〈C, P 〉. Herbrand structures have a fixed universe, the Herbrand universe H = (C, id),
where id is the identity function. For a Herbrand structure I = 〈H, I〉, I can be viewed
as a subset of the Herbrand base, B, which consists of the ground atoms of L. Note that
by definition of H, Herbrand structures are SNA-structures. A Herbrand structure I is
an answer set [12] ofP if I is subset minimal among the structures satisfying grH(P)I .
Two variations of this semantics, the open [8] and generalised open answer set [9]
semantics, consider open domains, thereby relaxing the PNA. An extended Herbrand
structure is a first-order structure based on a universe U = (D, id), where D ⊇ C.

Definition 1. A first-order L-structure I = 〈U, I〉 is called a generalised open answer
set of P if I is subset minimal among the structures satisfying all rules in grU (P)I . If,
additionally, I is an extended Herbrand structure, then I is an open answer set of P .

3 Note that this is not the substructure or submodel relation in classical model theory, which
holds between a structure and its restriction to a subdomain.

4 By¬ we mean negation as failure and not classical, or strong negation, which is also sometimes
considered in ASP.
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In the open answer set semantics the UNA applies. Note that every answer set of a
program is also an open answer set [8], but the converse does not hold in general:

Example 2. Consider P = {p(a); ok ← ¬p(x); ← ¬ok} over L = 〈{a}, {p, ok}〉.
We leave it as an exercise to the reader to show that P is inconsistent under the answer
set semantics, but M = 〈({a, c1}, id), {p(a), ok}〉 is an open answer set of P .

An alternative approach to relax the UNA has been presented by Rosati in [19]: Instead
of grounding with respect to U , programs are grounded with respect to the Herbrand
universe H = (C, id), and minimality of the models of grH(P)I wrt. U is redefined:
I�H = {p(σ(c1), . . . , σ(cn)) | p(c1, . . . , cn) ∈ B, I |= p(c1, . . . , cn)}, i.e., I�H
is the restriction of I to ground atoms of B. Given L-structures I1 = (U1, I1) and
I2 = (U2, I2), the relation I1 ⊆H I2 holds if I1�H ⊆ I2�H.

Definition 2. An L-structure I is called a generalised answer set of P if I is ⊆H-
minimal among the structures satisfying all rules in grH(P)I .

The following Lemma establishes that, for safe programs, all atoms of AtD(C, P ) sat-
isfied in an open answer set of a safe program are ground atoms over CP :

Lemma 1. Let P be a safe program over L = 〈C, P 〉 with M = 〈U, I〉 a (generalised)
open answer set over universe U = (D, σ). Then, for any atom from AtD(C, P ) such
that M |= p(d1, . . . , dn), there exist ci ∈ CP such that σ(ci) = di for each 1 ≤ i ≤ n.

From this Lemma, the following correspondence follows directly.

Proposition 1. M is an (generalised) answer set of a safe program P if and only if M
is an (generalised) open answer set of P .

If the SNA applies, consistency with respect to all semantics introduced so far boils
down to consistency under the original definition of answer sets:

Proposition 2. A program P has an answer set if and only if P has a generalised open
answer under the SNA.

Answer sets under SNA may differ from the original answer sets since also
non-Herbrand structures are allowed. Further, we observe that there are programs which
have generalised (open) answer sets but do not have (open) answer sets, even for safe
programs:

Example 3. Consider P = {p(a); ← ¬p(b)} over L = 〈{a, b}, {p}〉.P is ground, thus
obviously safe. However, although P has a generalised (open) answer set – the reader
may verify this by, for instance, considering the one-element universe U = ({d}, σ),
where σ(a) = σ(b) = d – it is inconsistent under the open answer set semantics.

4 Hybrid Knowledge Bases

We now turn to the concept of hybrid knowledge bases, which combine classical the-
ories with the various notions of answer sets. We define a notion of hybrid knowledge
bases which generalizes definitions in the literature [18,19,20,9]. We then compare and
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discuss the differences between the various definitions. It turns out that the differences
are mainly concerned with the notion of answer sets, and syntactical restrictions, but
do not change the general semantics. This will allow us to base our embedding into
Quantified Equilibrium Logic on a unified definition.

A hybrid knowledge base K = (T ,P) over the function-free languageL = 〈C, PT ∪
PP〉 consists of a classical first-order theory T (also called the structural part of K) over
the language LT = 〈C, PT 〉 and a program P (also called rules part of K) over the
language L, where PT ∩ PP = ∅, i.e. T and P share a single set of constants, and the
predicate symbols allowed to be used in P are a superset of the predicate symbols in LT .
Intuitively, the predicates in LT are interpreted classically, whereas the predicates in LP
are interpreted nonmonotonically under the (generalised open) answer set semantics.
With LP = 〈C, PP 〉 we denote the restricted language of P .

We define the projection of a ground program P with respect to an L-structure
I = 〈U, I〉, denoted Π(P , I), as follows: for each rule r ∈ P , rΠ is defined as:

1. rΠ = ∅ if there is a literal over AtD(C, PT ) in the head of r of form p(t) such that
p(σ(t)) ∈ I or of form ¬p(t) with p(σ(t)) �∈ I;

2. rΠ = ∅ if there is a literal over AtD(C, PT ) in the body of r of form p(t) such that
p(σ(t)) �∈ I or of form ¬p(t) such that p(σ(t)) ∈ I;

3. otherwise rΠ is the singleton set resulting from r by deleting all occurrences of
literals from LT ,

and Π(P , I) =
⋃{rΠ : r ∈ P}. Intuitively, the projection “evaluates” all classical

literals in P with respect to I.

Definition 3. Let K = (T ,P) be a hybrid knowledge base over the language
L = 〈C, PT ∪ PP〉. An NM-model M = 〈U, I〉 (with U = (D, σ)) of K is a first-
order L-structure such that M|LT is a model of T and M|LP is a generalised open
answer set of Π(grU (P),M).

Analogous to first-order models, we speak about PNA-, UNA-, and SNA-NM-models.

Example 4. Consider the hybrid knowledge base K = (T ,P), with T and P as in
Example 1, with the capitalised predicates being predicates in PT . Now consider the
interpretation I = 〈U, I〉 (with U = (D, σ)) with D = {DaveB, k}, σ the identity
function, and I = {AGENT (DaveB), HAS-MOTHER(DaveB, k), ANIMAL
(DaveB), machine(DaveB)}. Clearly, I|LT is a model of T . The projection
Π(grU (P), I) is

← ¬machine(DaveB),

which does not have a stable model, and thus I is not an NM-model of K. In fact,
the logic program P ensures that an interpretation cannot be an NM-model of K if
there is an AGENT which is neither a PERSON nor known (by conclusions from
P) to be a machine. It is easy to verify that, for any NM-model of K, the atoms
AGENT (DaveB), PERSON(DaveB), and ANIMAL(DaveB) must be true, and
are thus entailed by K. The latter cannot be derived from T or P individually.

We now proceed to compare our definition of NM-models with the various definitions
in the literature. The first kind of hybrid knowledge base we consider was introduced
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by Rosati in [18] (and extended in [20] under the name DL+log), and was labeled
r-hybrid knowledge base. Syntactically, r-hybrid KBs do not allow negated atoms in
rule heads, i.e. for rules of the form (1) l = k, and do not allow atoms from LT to occur
negatively in the rule body.5 Moreover, in [18], Rosati deploys a restriction which is
stronger than standard safety: each variable must appear in at least one positive body
atom with a predicate from LP . We call this conditionLP -safe in the remainder. In [20]
this condition is relaxed to weak LP -safety: there is no special safety restriction for
variables which occur only in body atoms from PT .

Definition 4. Let K = (T ,P) be an r-hybrid knowledge base, over the language
L = 〈C, PT ∪ PP 〉, where C is countably infinite, and P is a (weak) LP -safe pro-
gram. An r-NM-model M = 〈U, I〉 of K is a first-order L-SNA-structure such that
M|LT is a model of T and M|LP is an answer set of Π(grU (P),M).

In view of the (weak) LP -safety condition, we observe that r-NM-model existence co-
incides with SNA-NM-model existence on r-hybrid knowledge bases, by Lemma 1 and
Proposition 2. In [19], Rosati relaxes the UNA for what we will call here r+-hybrid
knowledge bases.

Definition 5. Let K = (T ,P) be an r+-hybrid knowledge base consisting of a theory
T and an LP -safe program P . An r+-NM-model, M = 〈U, I〉 of K is a first-order
L-structure such that M|LT is a model of T and M|LP is a generalised answer set of
Π(grU (P),M).

LP -safety guarantees safety of Π(grU (P),M). Thus, by Proposition 1, we can con-
clude that r+-NM-models coincide with NM-models on r-hybrid knowledge bases.

G-hybrid knowledge bases [9] allow a different form of rules in the program. In
order to regain decidability, rules are not required to be safe, but they are required to
be guarded (hence the ‘g’ in g-hybrid): All variables in a rule are required to occur in
a single positive body atom, the guard, with the exception of unsafe choice rules of the
form

p(c1, . . . , cn) ∨ ¬p(c1, . . . , cn) ←
are allowed. Moreover, disjunction in rule heads is limited to at most one positive atom,
i.e. for rules of the form (1) we have that k ≤ 1, but an arbitrary number of negated
head atoms is allowed. The definition of NM-models in [9] coincides precisely with our
Definition 3.

5 Quantified Equilibrium Logic (QEL)

Equilibrium logic for propositional theories and logic programs was presented in [14]
as a foundation for answer set semantics, and extended to the first-order case in [16],
as well as, in slightly more general, modified form, in [17]. For a survey of the main
properties of equilibrium logic, see [15]. Usually in quantified equilibrium logic we

5 Note that by projection, negation of predicates from PT is treated classically, whereas nega-
tion of predicates from PP is treated nonmonotonically. The negative occurrence of classical
predicates in the body is equivalent to the positive occurrence of the predicate in the head.
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consider a full first-order language allowing function symbols and we include a second,
strong negation operator as occurs in several ASP dialects. For the present purpose
of drawing comparisons with approaches to hybrid knowledge bases, it will suffice to
consider the function-free language with a single negation symbol, ‘¬’. In particular, we
shall work with a quantified version of the logic HT of here-and-there. In other respects
we follow the treatment of [17].

5.1 General Structures for Quantified Here-and-There Logic

As before, we consider a function-free first order languages L = 〈C, P 〉 built over a
set of constant symbols, C, and a set of predicate symbols, P . The sets of L-formulas,
L-sentences and atomic L-sentences are defined in the usual way.

Again, we only work with sentences, and, as in Section 2, by an L-interpretation
I over a set D we mean a subset I of AtD(C, P ). A here-and-there L-structure with
static domains, or QHTs(L)-structure, is a tuple M = 〈(D, σ), Ih, It〉 where

– D is a non-empty set, called the domain of M.
– σ is a mapping: C ∪ D → D called the assignment such that σ(d) = d for all

d ∈ D. If D = C and σ = id, M is a Herbrand structure.
– Ih, It are L-interpretations over D such that Ih ⊆ It.

We can think of M as a structure similar to a first-order classical model, but having
two parts, or components, h and t that correspond to two different points or “worlds”,
‘here’ and ‘there’, in the sense of Kripke semantics for intuitionistic logic [22], where
the worlds are ordered by h ≤ t. At each world w ∈ {h, t} one verifies a set of atoms Iw

in the expanded language for the domain D. We call the model static, since, in contrast
to say intuitionistic logic, the same domain serves each of the worlds.6 Since h ≤ t,
whatever is verified at h remains true at t. The satisfaction relation for M is defined
so as to reflect the two different components, so we write M, w |= ϕ to denote that
ϕ is true in M with respect to the w component. Evidently we should require that an
atomic sentence is true at w just in case it belongs to the w-interpretation. Formally, if
p(t1, . . . , tn) ∈ AtD then

M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw. (2)

Then |= is extended recursively as follows:7

– M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ.
– M, w |= ϕ ∨ ψ iff M, w |= ϕ or M, w |= ψ.
– M, t |= ϕ → ψ iff M, t �|= ϕ or M, t |= ψ.
– M, h |= ϕ → ψ iff M, t |= ϕ → ψ and M, h �|= ϕ or M, h |= ψ.
– M, w |= ¬ϕ iff M, t �|= ϕ.
– M, t |= ∀xϕ(x) iff M, t |= ϕ(d) for all d ∈ D.
– M, h |= ∀xϕ(x) iff M, t |= ∀xϕ(x) and M, h |= ϕ(d) for all d ∈ D.
– M, w |= ∃xϕ(x) iff M, w |= ϕ(d) for some d ∈ D.

6 Alternatively it is quite common to speak of a logic with constant domains.
7 The reader may easily check that the following correspond exactly to the usual Kripke seman-

tics for intuitionistic logic given our assumptions about the two worlds h and t and the single
domain D, see e.g. [22].
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Truth of a sentence in a model is defined as follows: M |= ϕ iff M, w |= ϕ for each
w ∈ {h, t}. A sentence ϕ is valid if it is true in all models, denoted by |= ϕ. A sentence
ϕ is a consequence of a set of sentences Γ , denoted Γ |= ϕ, if every model of Γ is a
model of ϕ. In a model M we often use the symbols H and T , possibly with subscripts,
to denote the interpretations Ih and It respectively; so, an L-structure may be written
in the form 〈U, H, T 〉, where U = (D, σ).

The resulting logic is called Quantified Here-and-There Logic with static domains,
denoted by QHTs, and can be axiomatised as follows.

Let INT= denote first-order intuitionistic logic [22] with the usual axioms for
equality:

x = x,
x = y → (F (x) → F (y))

for every formula F (x) such that y is substitutable for x in F (x). To this we add the
axiom of Hosoi

α ∨ (¬β ∨ (α → β))

which determines 2-element here-and-there models in the propositional case, and the
axiom:

SQHT ∃x(F (x) → ∀xF (x)).

The notation SQHT stands for “static quantified here-and-there”. Lastly we add the
“decidable equality” axiom

DE x = y ∨ x �= y.
For a completeness proof for QHTs, see [11].

As usual in first order logic, satisfiability and validity are independent from the lan-
guage. If M = 〈(D, σ), H, T 〉 is an QHTs(L′)-structure and L ⊂ L′, we denote by
M|L the restriction of M to the sublanguage L: M|L = 〈(D, σ|L), H |L, T |L〉.
Proposition 3. Suppose that L′ ⊃ L, Γ is a theory in L and M is an L′-structure such
M |= Γ . Then M|L is a model of Γ in QHTs

=(L).

Proposition 4. Suppose that L′ ⊃ L and ϕ ∈ L. Then ϕ is valid (resp. satisfiable) in
QHTs

=(L) if and only if is valid (resp. satisfiable) in QHTs
=(L′).

Analogous to the case of classical models we can define special kinds of QHTs (resp.
QHTs

=) models. Let M = 〈(D, σ), H, T 〉 be an L-structure that is a model of a uni-
versal theory T . Then, we call M a PNA-, UNA-, or SNA-model if the restriction of σ
to constants in C is surjective, injective or bijective, respectively.

5.2 Equilibrium Models and Their Relation to Answer Sets

As in the propositional case, quantified equilibrium logic is based on a suitable notion
of minimal model.

Definition 6. Among QHTs
=(L)-structures we define the order � as: 〈(D, σ), H, T 〉�

〈(D′, σ′), H ′, T ′〉 if D = D′, σ = σ′, T = T ′ and H ⊆ H ′. If the subset relation is
strict, we write ‘�’.
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Definition 7. Let Γ be a set of sentences and M = 〈(D, σ), H, T 〉 a model of Γ .
1. M is said to be total if H = T .
2. M is said to be an equilibrium model of Γ (or short, we say: “M is in equilibrium”)
if it is minimal under � among models of Γ , and it is total.

Notice that a total QHTs
= model of a theory Γ is equivalent to a classical first order

model of Γ .

Proposition 5. Let Γ be a theory inL andM an equilibrium model of Γ in QHTs
=(L′)

with L′ ⊃ L. Then M|L is an equilibrium model of Γ in QHTs
=(L).

The above version of QEL is described in more detail in [17]. If we assume all models
are UNA-models, we obtain the version of QEL found in [16]. There, the relation of
QEL to (ordinary) answer sets for logic programs with variables was established (in [16,
Corollary 7.7]). For the present version of QEL the correspondence can be described as
follows.

Proposition 6 ([17]). Let Γ be a universal theory in L = 〈C, P 〉. Let 〈U, T, T 〉 be a
total QHTs

= model of Γ . Then 〈U, T, T 〉 is an equilibrium model of Γ iff 〈T, T 〉 is a
propositional equilibrium model of grU (Γ ).

By convention, when P is a logic program with variables we consider the models and
equilibrium models of its universal closure expressed as a set of logical formulas. So,
from Proposition 6 we obtain:

Corollary 1. Let P be a logic program. A total QHTs
= model 〈U, T, T 〉 of P is an

equilibrium model of P iff it is a generalised open answer set of P .

6 Relation Between Hybrid KBs and QEL

In this section we show how equilibrium models for hybrid knowledge bases relate to
the NM models defined earlier and we show that QEL captures the various approaches
to the semantics of hybrid KBs in the literature [18,19,20,9].

Given a hybrid KB K = (T ,P) we call T ∪ P ∪ st(T ) the stable closure of K,
where st(T ) = {∀x(p(x) ∨ ¬p(x)) : p ∈ LT }.8 From now on, unless otherwise clear
from context, the symbol ‘|=’ denotes the truth relation for QHTs

=. Given a ground
program P and an L-structure M = 〈U, H, T 〉, the projection Π(P ,M) is understood
to be defined relative to the component T of M.

Lemma 2. Let M = 〈U, H, T 〉 be a QHTs
=-model of T ∪ st(T ). Then M |= P iff

M|LP |= Π(grU (P),M).

Proof. By the hypothesis M |= {∀x(p(x)∨¬p(x)) : p ∈ LT }. It follows that H |LT =
T |LT . Consider any r ∈ P , such that rΠ �= ∅. Then there are four cases to consider.
(i) r has the form α → β ∨ p(t), p(t) ∈ LT and p(σ(t)) �∈ T , so M |= ¬p(t). W.l.o.g.
assume that α, β ∈ LP , so rΠ = α → β and

8 Evidently T becomes stable in K in the sense that ∀ϕ ∈ T , st(T ) |= ¬¬ϕ → ϕ. The
terminology is drawn from intuitionistic logic and mathematics.
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M |= r ⇔ M |= rΠ ⇔ M|LP |= rΠ (3)
by the semantics for QHTs

= and Theorem 3. (ii) r has the form α → β ∨¬p(t), where
p(σ(t)) ∈ T ; so p(σ(t)) ∈ H and M |= p(t). Again it is easy to see that (3) holds.
Case (iii): r has the form α ∧ p(t) → β and p(σ(t)) ∈ H, T , so M |= p(t). Case (iv):
r has the form α ∧ ¬p(t) → β and M |= ¬p(t). Clearly for these two cases (3) holds
as well. It follows that if M |= P then M|LP |= Π(grU (P),M).

To check the converse condition we need now only examine the cases where rΠ = ∅.
Suppose this arises because p(σ(t)) ∈ H, T , so M |= p(t). Now, if p(t) is in the head
of r, clearly M |= r. Similarly if ¬p(t) is in the body of r, by the semantics M |= r.
The cases where p(σ(t)) �∈ T are analogous and left to the reader. Consequently if
M|LP |= Π(grU (P),M), then M |= P . �

We now state the relation between equilibrium models and NM-models.

Theorem 1. Let K = (T ,P) be a hybrid knowledge base. Let M = 〈U, T, T 〉 be a
total here-and-there model of the stable closure of K. Then M is in equilibrium if and
only if 〈U, T 〉 is an NM-model of K.

Proof. Assume the hypothesis and suppose that M is in equilibrium. Since T contains
only predicates from LT and M |= T ∪ st(T ), evidently

M|LT |= T ∪ st(T ) (4)
and so in particular (U,M|LT ) is a model of T . By Lemma 2,

M |= P ⇔ M|LP |= Π(grU (P),M). (5)
We claim (i) that M|LP is an equilibrium model of Π(grU (P),M). If not, there is
a model M′ = 〈H ′, T ′〉 with H ′ ⊂ T ′ = T |LP and M′ |= Π(grU (P),M). Lift
(U,M′) to a (first order) L-structure N by interpreting each p ∈ LT according to M.
So N|LT = M|LT and by (4) clearly N |= T ∪st(T ). Moreover, by Lemma 2 N |= P
and by assumption N � M, contradicting the assumption that M is an equilibrium
model of T ∪ st(T ) ∪ P . This establishes (i). Lastly, we note that since 〈T |LP , T |LP 〉
is an equilibrium model of Π(grU (P),M), M|LP is a generalised open answer set of
Π(grU (P),M) by Corollary 1, so that M = 〈U, T, T 〉 is an NM-model of K.

For the converse direction, assume the hypothesis but suppose that M is not in equi-
librium. Then there is a model M′ = 〈U, H, T 〉 of T ∪ st(T ) ∪P , with H ⊂ T . Since
M′ |= P we can apply Lemma 2 to conclude that M′|LP |= Π(grU (P),M′). But
clearly

Π(grU (P),M′) = Π(grU (P),M).

However, since evidently M′|LT = M|LT , thus M′|LP � M|LP , so this shows that
M|LP is not an equilibrium model of Π(grU (P),M) and therefore T |LP is not an
answer set of Π(grU (P),M) and M is not an NM- model of K. �

This establishes the main theorem relating to the various special types of hybrid KBs
discussed earlier.

Theorem 2 (Main Theorem). (i) Let K = (T ,P) be a g-hybrid (resp. an r+-hybrid)
knowledge base. Let M = 〈U, T, T 〉 be a total here-and-there model of the stable
closure of K. Then M is in equilibrium if and only if 〈U, T 〉 is an NM-model (resp.
r+-NM-model) of K.
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(ii) Let K = (T ,P) be an r-hybrid knowledge base. Let M = 〈U, T, T 〉 be an
Herbrand model of the stable closure of K. Then M is in equilibrium in the sense
of [16] if and only if 〈U, T 〉 is an r-NM-model of K.

Example 5. Consider again the hybrid knowledge base K = (T ,P), with T and P as
in Example 1. The stable closure of K, st(K) = T ∪ st(T ) ∪ P is

∀x.PERSON(x) → (AGENT (x) ∧ (∃y.HAS-MOTHER(x, y)))
∀x.(∃y.HAS-MOTHER(x, y)) → ANIMAL(x)
∀x.PERSON(x) ∨ ¬PERSON(x)
∀x.AGENT (x) ∨ ¬AGENT (x)
∀x.ANIMAL(x) ∨ ¬ANIMAL(x)
∀x, y.HAS-MOTHER(x, y) ∨ ¬HAS-MOTHER(x, y)
∀x.AGENT (x) ∧ ¬machine(x) → PERSON(x)
AGENT (DaveB)

Consider the total HT-model MHT = 〈U, I, I〉 of st(K), with U, I as in Example 4.
MHT is not an equilibrium model of st(K), since MHT is not minimal among all mod-
els: 〈U, I ′, I〉, with I ′ = I\{machine(DaveB)}, is a model of st(K). Furthermore, it
is easy to verify that 〈U, I ′, I ′〉 is not a model of st(K).

Now, consider the total HT-model M′
HT = 〈U, M, M〉, with U as before, and

M ={AGENT (DaveB), PERSON(DaveB),
ANIMAL(DaveB), HAS-NAME(DaveB, k)}.

M′
HT is an equilibrium model of st(K). Indeed, consider any M ′ ⊂ M . It is easy to

verify that 〈U, M ′, M〉 is not a model of st(K).

6.1 Discussion

We have seen that quantified equilibrium logic captures three of the main approaches to
integrating classical, first-order or DL knowledge bases with nonmonotonic rules under
the answer set semantics, in a modular, hybrid approach. However, QEL has a quite
distinct flavor from those of r-hybrid, r+-hybrid and g-hybrid KBs. Each of these hybrid
approaches has a semantics composed of two different components: a classical model
on the one hand and an answer set on the other. The style of QEL is different. There
is one semantics and one kind of model that covers both types of knowledge. The only
distinction we make is that for that part of the knowledge base considered to be classical
and monotonic we add a stability condition to obtain the intended interpretation.

There are other features of the approach using QEL that are worth highlighting. First,
it is based on a simple minimal model semantics in a known non-classical logic. No
reducts are involved and, consequently, the equilibrium construction applies directly to
arbitrary first-order theories. The rule part P of a knowledge base might therefore com-
prise, say, a nested logic program, where the heads and bodies of rules may be arbitrary
boolean formulas, or perhaps rules permitting nestings of the implication connective.
While answer sets have recently been defined for such general formulas, more work
would be needed to provide integration in a hybrid KB setting.9 Evidently QEL in the

9 For a recent extension of answer sets to first-order formulas, see [6].
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general case is undecidable, so for extensions of the rule language syntax for practi-
cal applications one may wish to study restrictions analogous to safety or guardedness.
Second, the logic QHTs

= can be applied to characterise properties such as the strong
equivalence of programs and theories [11,17]. While strong equivalence and related
concepts have been much studied recently in ASP, their characterisation in the case of
hybrid KBs remains uncharted territory. The fact that QEL provides a single semantics
for hybrid KBs means that a simple concept of strong equivalence is applicable to such
KBs and characterisable using the underlying logic, QHTs

=. We now describe briefly
how QHTs

= can be applied in this context.

6.2 An Application to the Strong Equivalence of Knowledge Bases

Generally speaking it is important to know when different reconstructions of a given
body of knowledge or state of affairs are equivalent and lead to essentially the same
solutions. In the case of knowledge reconstructed in classical logic, ordinary logical
equivalence can serve as a suitable concept when applied to theories formulated in
the same vocabulary. In the case where nonmonotonic rules are present, however, one
would like to know that equivalence between KBs is also robust, since two sets of rules
may have the same answer sets yet behave very differently once they are embedded
in some larger context. A robust or modular notion of equivalence for logic programs
should therefore require that programs behave similarly when extended by any further
programs. This leads to the following concept of strong equivalence: programs Π1 and
Π2 are strongly equivalent if and only if for any set of rules Σ, Π1 ∪ Σ and Π2 ∪ Σ
have the same answer sets. This concept of strong equivalence for logic programs in
ASP was introduced and studied in [10] and has given rise to a substantial body of
further work looking at different characterisations, new variations and applications of
the idea, as well as the development of systems to test for strong equivalence.

In the case of hybrid knowledge bases K = (T ,P), various kinds of equivalence can
be specified, according to whether one or other or both of the components T and P are
allowed to vary. Let us illustrate for simplicity the case where T is fixed and P may
vary; the extension to other cases is straightforward.

Definition 8. Let K1 = (T ,P1) and K2 = (T ,P2) be two hybrid KBs based on the
same classical theory T . K1 and K2 are said to be strongly equivalent if for any set of
rules P , (T ,P1 ∪ P) and (T ,P2 ∪ P) have the same NM-models.

The following characterisation of strong equivalence is an immediate consequence of
Theorem 1 and the main theorem of [11].

Proposition 7. Hybrid KBs K1 = (T ,P1) and K2 = (T ,P2) are strongly equivalent
if and only if P1 and P2 are logically equivalent in QHTs

=.

In other words, although we consider the effect of adding arbitrary nonmonotonic rules
to a knowledge base, ordinary logical equivalence in QHTs

= is a necessary and suffi-
cient condition for strong equivalence.

It is interesting to note here that meaning-preserving relations among ontologies have
recently become a topic of interest in the DL community where logical concepts such
as that of conservative extension are currently being studied and applied [7]. A unified,
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logical approach to hybrid KBs such as that developed here should lend itself well to
the application of such concepts.

7 Related Work and Conclusions

We have provided a general notion of hybrid knowledge base, combining first-order
theories with nonmonotonic rules, with the aim of comparing and contrasting some of
the different variants of hybrid KBs found in the literature [18,19,20,9]. We presented a
version of quantified equilibrium logic, QEL, without the unique names assumption, as
a unified logical foundation for hybrid knowledge bases. We showed how for a hybrid
knowledge base K there is a natural correspondence between the nonmonotonic models
of K and the equilibrium models of what we call the stable closure of K. This yields a
way to capture in QEL the semantics of the g-hybrid KBs of Heymans et al. [9] and the
r-hybrid KBs of Rosati [19], where the latter is defined without the UNA but for safe
programs. Similarly, the version of QEL with UNA captures the semantics of r-hybrid
KBs as defined in [18,20]. It is important to note that the aim of this paper was not that
of providing new kinds of safety conditions or decidability results; these issues are ably
dealt with in the literature reviewed here. Rather our objective has been to show how
classical and nonmonotonic theories might be unified under a single semantical model.
In part, as [9] show with their reduction of DL knowledge bases to open answer set pro-
grams, this can also be achieved (at some cost of translation) in other approaches. What
distinguishes QEL is the fact that it is based on a standard, nonclassical logic, QHTs

=,
which can therefore provide a unified logical foundation for such extensions of (open)
ASP. To illustrate the usefulness of our framework we showed how the logic QHTs

=

also captures a natural concept of strong equivalence between hybrid knowledge bases.
There are several other approaches to combining languages for Ontologies with non-

monotonic rules which can be divided into two main streams [3]: approaches which
define integration of rules and ontologies (a) by entailment, ie. querying classical
knowledge bases through special predicates the rules body, and (b) on the basis of single
models, ie. defining a common notion of combined model.

The most prominent of the former kind of approaches are dl-programs [5] and their
generalization, HEX-programs [4]. Although these approaches both are based on An-
swer Set programming like our approach, the orthogonal view of integration by en-
tailment can probably not be captured by a simple embedding in QEL. Another such
approach which allows querying classical KBs from a nonmonotonic rules language is
based on Defeasible Logic [21].

As for the second stream, variants of Autoepistemic Logic [2], and the logic of mini-
mal knowledge and negation as failure (MKNF) [13] have been recently proposed in the
literature. Similar to our approach, both these approaches embed a combined knowledge
base in a unifying logic. Remarkably however, both [2] and [13] use modal logics which
syntactically and semantically extend first-order logics. Thus, in these approaches, em-
bedding of the classical part of the theory is trivial, whereas the nonmonotonic rules
part needs to be rewritten in terms of modal formulae. Our approach is orthogonal, as
we base on a non-classical logic where the nonmonotonic rules are trivially embedded,
but the stable closure guarantees classical behavior of certain predicates.
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In future work we hope to consider further aspects of applying QEL to the domain
of hybrid knowledge systems. Extending the language with functions symbols and with
strong negation is a routine task, since QEL includes these items already. We also plan
to consider in the future how QEL can be used to define a catalogue of logical relations
between hybrid KBs.
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Abstract. The most promising feature of the Web services platform is its ability 
to form new (composite) services by combining the capabilities of already  
existing (component) services. The existing services may themselves be com-
posite leading to a hierarchical composition. In this work, we focus on the dis-
covery aspect. We generalize the characteristics of a service, which need to be 
considered for successful execution of the service, as constraints. We present a 
predicate logic model to specify the corresponding constraints. Further, com-
posite services are also published in a registry and available for discovery (hier-
archical composition). Towards this end, we show how the constraints of a 
composite service can be derived from the constraints of its component services 
in a consistent manner. Finally, we present an incremental matchmaking algo-
rithm which allows bounded inconsistency.  

Keywords: Web Services, Composition, Discovery, Constraints, Matchmaking. 

1   Introduction 

Web services, also known in a broader context as Service Oriented Architecture 
(SOA) based applications, are based on the assumption that the functionality provided 
by an enterprise (provider) are exposed as services. The World Wide Web Consor-
tium (W3C) defines Web Services as “a software application identified by a URI, 
whose interfaces and bindings are capable of being defined, described, and discovered 
as XML artifacts. A Web service supports direct interactions with other software 
agents using XML-based messages exchanged via Internet-based protocols”. The 
most promising aspect of the Web services platform is the composability aspect, that 
is, its ability to form new services (hereafter, referred to as composite services) by 
combining the capabilities of already existing services (hereafter, referred to as com-
ponent services). The existing services may themselves be composite leading to a 
hierarchical composition. The services which do not depend on any other services for 
their execution are referred to as primitive services. 

There are mainly two approaches to composing a service: dynamic and static. In 
the dynamic approach [1], given a complex user request, the system comes up with a 
plan to fulfill the request depending on the capabilities of available Web services at 
run-time. In the static approach [2], given a set of Web services, composite services 
are defined manually at design-time combining their capabilities. In this paper, we 
                                                           
* This work is supported by the ANR DOCFLOW and CREATE ACTIVEDOC projects. 
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consider a mix [3] of the two approaches where the composite services are defined 
statically, but the matchmaking with providers is performed dynamically depending 
on the user request. The above approach is typical of a group of organizations col-
laborating to provide recurring general services, usually, requested by users. Thus, we 
assume that the organizations (providers) agree on some of the compositional aspects, 
such as, ontology used to describe their services, underlying state transition model, 
logging format, etc. 

As mentioned earlier, the main focus of this paper is on the discovery aspect for 
Web services composition. The current industry standard, Universal Description, 
Discovery and Integration (UDDI) [4], only supports classification (keyword) based-
search and does not capture the semantics of Web services functionality. To overcome 
this, work has already been initiated towards a semantic description specification for 
Web services, especially, the Web Ontology Language for Services (OWL-S) [5] 
specification. The OWL-S specification allows a service to be specified in terms of its 
IOPE: Inputs, Outputs (required input and expected output values of the service pa-
rameters, respectively), Pre-conditions (the state of the world as it should be before 
execution), and Effects (the state of the world as it would be after execution). We 
generalize the above as constraints, that is, characteristics of a service which need to 
be considered for successful execution of the service. For example, let us consider a 
house painting contractor C whose services can be reserved online (via credit card). 
Given this, the fact that the user requires a valid credit card is a pre-condition; and the 
fact that the user’s house will be painted along with the painting charges deducted 
from his/her account, are the effects. In addition, we also need to consider any limita-
tions of C during the actual execution phase, e.g., the fact that C works only on week-
days (and not on weekends). The above restriction might be a problem if the user 
would like to get the work done during weekends. In general, pre-conditions refer to 
the conditions required to initiate an execution and effects reflect the expected condi-
tions after the execution terminates. Constraints attempt to capture the conditions 
necessary for the entire execution lifecycle (initiate-terminate). 

A significant contribution of this paper is the aspect of constraint composition and 
its impact on service discovery. This aspect has been mostly overlooked till now as, 
according to most specifications, the description of a composite service resembles that 
of a primitive service externally (or at an abstract level). However, determining the 
description of a complex composite service, by itself, is non-trivial. Given their inher-
ent non-determinism (allowed by the “choice” operators within a composition 
schema), it is impossible to statically determine the subset of component services 
which would be invoked at run-time. The above implies the difficulty in selecting the 
component services, whose constraints should be considered, while defining the con-
straints of the composite service. Basically, the constraints of a composite service 
should be consistent with the constraints of its component services. In this paper, we 
take the bottom-up approach and discuss how the constraints of a composite service 
can be consistently derived from the constraints of its component services. Towards 
this end, we consider four approaches: optimistic, pessimistic, probabilistic and rela-
tive. Finally, we discuss how matchmaking can be performed based on the constraints 
model. Current matchmaking algorithms focus on “exact” matches (or the most opti-
mum match). They do not consider the scenario where a match does not exist. We try 
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to overcome the above by allowing inconsistencies during the matchmaking process 
(does not have to be an exact match) up to a “bounded” limit. 

Before proceeding, we would like to mention that the work in this paper is part of 
ongoing work to provide a lightweight discovery mechanism for ActiveXML 
(AXML) [6] systems. AXML systems provide an elegant way to combine the power 
of XML, Web services and Peer to Peer (P2P) paradigms by allowing (active) Web 
service calls to be embedded in XML documents. An AXML system consists of the 
following main components: 

− AXML documents: XML documents with embedded Web service calls. The em-
bedded services may be AXML services (defined below) or generic Web services. 

− AXML Services: Web services defined as queries/updates over AXML documents. 
An AXML service is also exposed as a regular Web service (with a WSDL de-
scription file). 

− AXML peers: Nodes where the AXML documents and services are hosted. 

Currently, the provider for an embedded service call is hard coded in the AXML 
document. The objective is to let AXML systems also benefit from the additional 
flexibility offered by dynamic selection (among the available AXML peers). As 
obvious, this can be achieved by replacing the hard coding with a query to select the 
provider at run-time. Given this, we needed a mechanism for discovery in an envi-
ronment, which is more homogeneous as compared to dynamic Web services com-
positions (and allows us to assume the presence of a shared ontology, state transition 
model, etc.). As the proposed concepts are valid for Web services compositions in 
general, we present them in a Web services context (in the sequel); and only mention 
their usage with respect to AXML to show their practical relevance. 

The rest of the paper is organized as follows: Section 2 deals with the constraints as-
pect in detail, starting with a predicate logic specification of constraints (sub-section 2.1) 
followed by the constraints composition model (sub-section 2.2). The incremental 
matchmaking algorithm is presented in section 3. Sections 4 and 5 discuss related works 
and conclude the paper, respectively. 

2   Constraints 

As mentioned earlier, constraints refer to the characteristics of a service which need to 
be considered for a successful execution of the service. Before proceeding, we would 
like to discuss some heuristics to decide if a characteristic should (or should not) be 
considered as a constraint. If we consider constraints as limitations, then the fact that 
an Airline ABC cannot provide booking for a particular date is also a limitation (and 
hence, a constraint). However, we do not expect such characteristics to be expressed 
as constraints as they keep changing frequently. Similarly, we do not expect charac-
teristics which depend on internal business rules (sensitive or confidential informa-
tion) to be exposed as constraints. Thus, what should (or should not) be expressed as 
constraints is very much context-specific, and we simply consider constraints as a 
level of filtering during the discovery process. 
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2.1   Constraint Specification 

Constraints are specified as first order predicates associated with the service defini-
tions. For example, the fact that an airline ABC provides vegetarian meals and has 
facilities for handicapped people on only some of its flights (to selected destinations) 
can be represented as follows: 

flight(Airlines,X,Y):-  
veg_meals(Airlines,Destination_List), member(X,Destination_List), 
hnd_facilities(Airlines,Destination_List), member(Y,Destination_List). 

veg_meals(‘ABC’,[‘Paris’,‘Rennes’]). 
hnd_facilities(‘ABC’,[‘Paris’,‘Grenoble’]). 

In the above snippet, ‘member(X,Y)’ is a  system defined predicate which  holds if 
X is an element of the set Y. Now, let us consider “related” constraints or scenarios 
where there exists a relationship among the constraints. By default, the above exam-
ple assumes an AND relation among the constraints (both veg_meals and 
hnd_facilities predicates have to be satisfied). The operators studied in literature for 
the composition of logic programs are: AND, OR, ONE-OR-MORE, ZERO-OR-
MORE and any nesting of the above. We only consider the operators AND, OR and 
any level of nesting of both to keep the framework simple (ONE-OR-MORE and 
ZERO-OR-MORE can be expressed in terms of OR). An example of an OR relation 
among the constraints is as follows: Airline ABC allows airport lounge access at in-
termediate stopovers only if the passenger holds a business class ticket or is a member 
of their frequent flier programme. The above scenario can be represented as follows: 

lounge_access(Airlines,X):- 
ticket_type(‘ABC’,X,’Business’). 

lounge_access(Airlines,Y):- 
frequent_flier(Airlines,FF_List), member(Y,FF_List). 

We briefly consider the following qualifiers which may be specified in conjunction 
with the constraints: 

− Validity period: Period until when the constraints are valid. The validity period 
qualifier can be used to optimize matchmaking. Basically, there is no need to re-
peat the entire matchmaking process for each and every request. Once a service 
provider is found suitable, it remains so till the validity period of at least one of its 
“relevant” constraints expires. 

− Commitment: The commitment of a provider towards providing a specific service 
(levels of commitment [7]). For example, a provider may be willing to accept the 
responsibility of providing its advertised services under any circumstance; or that it 
is capable of providing the services, but not willing to accept responsibility if 
something goes wrong. 

− Non-functional: Qualifiers related to non-functional aspects, such as, transactions, 
security, monitoring (performance), etc. From a transactional point of view, we need 
to know the protocols supported for concurrency control (e.g., 2PL), atomic commit 
(e.g., 2PC), and the following attributes required for recovery: idempotent (the ef-
fect of executing a service once is the same as executing it more than once), com-
pensatable (its effects can be semantically canceled), pivot (non-compensatable). 
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From a security perspective, it is important to know the protocols supported for 
message exchange (e.g., X.509), and if any part of the interaction or service descrip-
tion needs to be kept confidential.  The relevant qualifiers, from a monitoring point 
of view, would be the time interval between successive snapshots of the system 
state, snapshot format, etc. It is obviously possible to have qualifiers which overlap 
between the aspects, e.g., it may be required to specify if part of the monitored data 
(snapshot) cannot be exposed due to security issues. 

2.2   Constraints Composition 

2.2.1   Broker 
The composite provider aggregates services offered by different providers and pro-
vides a unique interface to them (without any modification to the functionality of the 
services, as such). In other words, the composite provider acts as a broker for the 
aggregated set of services [8]. The accumulated services may have different function-
alities or the same functionality with different constraints (as shown by the following 
example scenario). Scenario: Provider XYZ composing the flight services offered by 
Airlines ABC and DEF. 

Airlines ABC: 
flight(Airlines,X):-  
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List). 
hnd_facilities(‘ABC’,[‘Marseilles’,‘Grenoble’]). 

Airlines DEF: 
flight(Airlines,X):- 
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List). 
hnd_facilities(‘DEF’,[‘Rennes’,‘Paris’]). 

Composite provider XYZ: 
flight(Airlines,X):- 
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List), 
 Airlines:= ‘XYZ’. 
hnd_facilities(‘ABC’,[‘Marseilles’,‘Grenoble’]). 
flight(Airlines,X):-  
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List), 
 Airlines:= ‘XYZ’. 
hnd_facilities(‘DEF’,[‘Rennes’,‘Paris’]). 

The addition of the clauses Airlines:= ‘XYZ’ in the above code snippet ensures 
that the binding returned to the outside world is provider XYZ while the provider 
XYZ internally delegates the actual processing to the providers ABC/DEF. Another 
point highlighted by the above example is that composition may lead to relaxation of 
constraints, e.g., the composite provider XYZ can offer flights with facilities for 
handicapped people to more destinations (Marseilles, Grenoble, Rennes and Paris) 
than offered by either of the component providers ABC (Marseilles, Grenoble)/DEF 
(Rennes, Paris). 
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2.2.2   Mediator 
Two or more services offered by (the same or) different providers are composed to 
form a new composite service with some additional logic (if required) [8]. We assume 
that the composition schema is specified using some conversation language, e.g., 
Business Process Execution Language for Web Services (BPEL) [2], OWL-S Service 
Model [5], etc. We show how the constraints of component services, composed in 
sequence or parallel, can be composed. Given an Airline ABC with facilities for 
handicapped people on its flights to selected destinations, 

flight(Airlines,X):-  
 hnd_facilities(Airlines,Destination_List), member(X,Destination_List). 
hnd_facilities(‘ABC’,[‘Marseilles’,‘Grenoble’]). 

and a transport company DEF which has facilities for handicapped people on its 
local bus networks in selected cities, 

bus(Transport_C,X):-  
hnd_facilities(Transport_C,Cities_List), member(X, Cities_List). 

hnd_facilities(‘DEF’,[‘Marseilles’,‘Rennes’]). 

the constraints of the composite service provider Travel Agent XYZ can be defined 
as follows: 

flight_bus(Agent,X):- 
sequence(_flight(Agent1,X),_bus(Agent2,X)), 
Agent:= XYZ. 

_flight(Airlines,X):- 
hnd_facilities(Airlines,Destination_List), member(X,Destination_List). 

hnd_facilities(‘ABC’,[‘Marseilles’,‘Grenoble’]). 
_bus(Transport_C,X):- 

hnd_facilities(Transport_C,Cities_List), member(X, Cities_List). 
hnd_facilities(‘DEF’,[‘Marseilles’,‘Rennes’]). 

The point to note in the above code snippet is the flight_bus predicate representing 
the newly formed composite service. Also, the original predicates of the primitive 
services are prefixed with _ to indicate that those services are no longer available 
(exposed) for direct invocation. The above scenario highlights the restrictive nature of 
constraint composition. For example, the newly composed service flight_bus can 
provide both flight and bus booking with facilities for handicapped people to fewer 
destinations (Marseilles) as compared to the destinations covered by the component 
services separately: flight (Marseilles, Grenoble) and bus (Marseilles, Rennes).  
Finally, we discuss the usage of the sequence predicate (in the above code snippet). 
For a group of constraints, the sequence relationship implies that all the constraints in 
the group need to hold (analogous to AND), however, they do not need to hold simul-
taneously, and it is sufficient if they hold in the specified sequence. For example, let 
us assume that the premium (constraint) of an insurance policy is €€ 10,000, payable 
over a period of 10 years. The above constraint is, in reality, equivalent to a sequence 
of €€ 1000 payments each year (the user does not have to pay €€ 10,000 upfront). The 
sequential relationship among the constraints can be derived from the ordering of 
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their respective services in the composition schema. Note that we do not consider the 
“parallel” relationship explicitly as it is equivalent to AND. 

2.2.3   Mediator with Non-determinism 
Till now, we have only considered deterministic operators in the composition schema, 
that is, sequential and parallel composition. With non-deterministic operators, the 
situation is slightly more complicated. Some of the component services, composed via 
non-deterministic operators, may never be invoked during an execution instance. As 
such, we need some logic to determine if the constraints of a component service 
should (or should not) be considered while defining the constraints of the composite 
service. For example, let us consider the e-shopping scenario illustrated in Fig. 1. 
There are two non-deterministic operators (choices) in the composition schema: 
Check Credit and Delivery Mode. The choice “Delivery Mode” indicates that the user 
can either pick-up the order directly from the store or have it shipped to his/her ad-
dress. Given this, shipping is a non-deterministic choice and may not be invoked 
during the actual execution. As such, the question arises “if the constraints of the 
shipping service, that is, the fact that it can only ship to certain countries, be projected 
as constraints of the composite e-shopping service (or not)”. Note that even compo-
nent services composed using deterministic operators (Payment and Shipping) are not 
guaranteed to be invoked if they are preceded by a choice. We consider some  
approaches to overcome the above issue: 

− Optimistic: Consider the constraints of only those services, which are guaranteed to 
be invoked in any execution, while defining the constraints of the composite ser-
vice. The set of such services (hereafter, referred to as the strong set) can be deter-
mined by computing all the possible execution paths and selecting services which 
occur in all the paths. For example, with reference to the e-shopping scenario in 
Fig. 1, the strong set = {Browse, Order}. We call this approach optimistic as it as-
sumes that the services in the strong set are sufficient to represent the constraints of 
the composite service.  The concept of a strong set is analogous to the notion of 
strong unstable predicates [9] or predicates which will “definitely” hold [10] in lit-
erature. Strong unstable predicates are true if and only if the predicate is true for all 
total orders. For example, strong unstable predicates can be used to check if there 
was a point in the execution of a commit protocol when all the processes were 
ready to commit. Intuitively, strong unstable predicates allow us to verify that a de-
sirable state will always occur. 

− Pessimistic: In this approach, we take the pessimistic view and consider the con-
straints of all those services which are in at least one of the possible execution 
paths (while defining the constraints of the composite service). We refer to such a 
set of component services as the weak set. Note that the weak set would consist of 
all the component services if there are no “unreachable” services in the composi-
tion schema. Again, with reference to the e-shopping scenario in Fig. 1, the weak 
set = {Browse, Order, Cancel Order & Notify Customer, Arrange for Pick-up, 
Payment, Shipping}. We refer to this approach as pessimistic as it considers the 
constraints of those services also which may not even be invoked during the actual 
execution. The corresponding notion in literature is weak unstable predicates [11] 
or predicates which will “possibly” occur [10]. A weak unstable predicate is true if 



80 D. Biswas 

and only if there exists a total order in which the predicate is true. For example, 
weak unstable predicates can be used to verify if a distributed mutual exclusion  
algorithm allows more than one process to be in the critical region simultaneously. 
Intuitively, weak unstable predicates can be used to check if an undesirable state 
will ever occur. 

− Probabilistic: Another option would be to consider the most frequently invoked 
component services (or the component services in the most frequently used execu-
tion path) as the representative set of the composite service. Such a set can be  
determined statically from the execution logs or dynamically with the help of some 
mathematical model (such as, Markov Decision Processes [12]) to assign prob-
abilities to the component services based on previous executions. Again, with ref-
erence to the e-shopping scenario in Fig. 1, a probable set of most frequently used 
component services would be {Browse, Order, Arrange for Pick-up}. While this 
option appears the most attractive at first sight, developing and solving a Mark-
ovian model is non-trivial for a complex composition schema (especially, if it  
involves a lot of choices). 

 

 

Fig. 1. An e-shopping scenario 

The trade-off between the various options (discussed till now) can be summarized as 
follows: (a) Optimistic: A successful initial match does not guarantee a successful exe-
cution (as the constraints of all the component services are not considered initially, it 
might not be feasible to find a provider for one of the component services at a later 
stage). Thus, the cost to consider for this case is in terms of failed contractual agree-
ments or simply the loss of user faith. (b) Pessimistic: “Pseudo” constraints may lead to 
the corresponding composite service becoming ineligible for (an otherwise successful 
match with) a user request. (c) Probabilistic: For this approach, the cost is in terms of 
the complexity in finding the adequate probabilities and distribution functions to define 
the probabilistic model. While the above approaches can be considered as extremes; 
next, we consider an intermediate, but more practical, approach to determine the  
representative set of component services (of a composite service). 
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Relative: In this approach, we consider an incremental construction of the set of com-
ponent services whose constraints need to be considered (while defining the constraints 
of the composite service). Basically, we start with the strong set and keep on adding the 
“related” services as execution progresses. We define related services as follows: 

Related services: Let X and Y be component services of a composition schema CS. 
Given this, X and Y are related if and only if the occurrence of X in an execution path 
P of CS implies the occurrence of Y in P. 

Intuitively, if a component service X of CS is executed then all the component ser-
vices till the next choice in CS will definitely be executed. For example, with refer-
ence to the e-shopping scenario in Fig. 1, services Payment and Shipping are related. 
As mentioned earlier, the execution of both Payment and Shipping are not guaranteed. 
However, if Payment is executed, then Shipping is also guaranteed to be executed. 
The above definition of related services can also be extended to non-invocation of a 
component service X as follows: 

Related services (extended): Let X and Y be component services of a composition 
schema CS. Given this, X and Y are related if and only if the (non-) occurrence of X 
in an execution path P of CS implies the (non-) occurrence of Y in P. 

Intuitively, if a component service X of CS is not executed then all the component 
services till the next merge in CS will also not be executed – Fig. 2. The extension is 
useful if we consider matching for more than one composite service simultaneously 
(not considered here). Given this, prior knowledge that a component service will not 
be invoked during a particular execution instance allows better scheduling of the 
providers among instances. 

 

 

Fig. 2. Related services (based on non-occurrence) 

Till now, we have only considered component services related by functional de-
pendencies (as specified by the composition schema). Other relationships between 
component services can also be (statically) determined based on the application or 
domain semantics. For example, with reference to an e-shopping scenario, the choice 
of €€  as the currency unit implies the (future) need for a shipping provider capable of 
delivering within countries of the European Union (EU). 

AXML application scenario. We discuss an implementation of the “related” approach 
in the context of query evaluation by AXML systems. Given a query q on an AXML 
document d, the system returns the subset of nodes of d which satisfy the query crite-
rion. There are two possible modes for query evaluation: lazy and eager. Of the two, 
lazy evaluation is the preferred mode and implies that only those services are invoked 
whose results are required for evaluating the query. Now, a query q on a document d 
may require invoking some of the embedded services in d. The invocation results are 
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Fig. 3. Sample AXML document ATPList.xml 

inserted as children of the embedded service node (modifying d). For example, let us 
consider the AXML document ATPList.xml in Fig. 3. The document ATPList.xml 
contains two embedded services “getPoints” and “getGrandSlamsWonbyYear”. Now, 
let us consider the following query: 

 

Query A:  
<action type = “query”> 
     <location>Select p/citizenship, p/grandslamswon from p in ATPList//player 

where p/name/lastname = Federer;</location> 
</action> 

Lazy evaluation of the above query would result in the invocation of the embedded 
service “getGrandSlamsWonbyYear” (and not “getPoints”). However, if the query 
were defined as follows: 
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Query B: 
<action type = “query”> 
     <location>Select p/citizenship, p/points from p in ATPList//player where 

p/name/lastname = Federer;</location> 
</action> 

Lazy evaluation of query B would result in the invocation of the embedded service 
call “getPoints” (and not “getGrandSlamsWonbyYear”). 

Thus, given a q and d, (at a high level) the following three step process is used for 
query evaluation: 

1. Determine the set of relevant embedded services in d to evaluate q. 
2. Invoke them and insert their results in d (leading to a modified d). 
3. Apply steps 1 and 2 iteratively on the modified d, till step 1 cannot find any rele-

vant calls to evaluate q. 

Step 3 is necessary because of the following reasons: (a) The result of a service in-
vocation maybe another service. (b) The invocation results may affect the document d 
in such a way that formerly non-relevant embedded services become relevant after a 
certain stage. For more details on the above AXML query evaluation aspects, the 
interested reader is referred to [13]. 

To summarize, it is not feasible to statically determine the set of services, which 
would be invoked during an execution instance (depends on the query and corre-
sponding invocation results). However, for each iteration, we can at least consider the 
constraints of the relevant (“related”) embedded services determined by step 1 to-
gether for discovery. 

3   Matchmaking 

3.1   Basic Matchmaking 

Here, we consider incremental matchmaking, that is, the provider for a service is 
selected as and when it needs to be executed. For a (composite) service X, let P(X) 
denote the constraints associated with X. Given this, the required matching for X can 
be accomplished by posing P(X) as a goal against the providers’ constraints. A logic 
program execution engine specifies not only if a goal can be satisfied but also all the 
possible bindings for the unbounded variables in the goal. The bindings correspond to 
the providers capable of executing X. In case of multiple possible bindings (multiple 
providers capable of executing the same service), the providers are ranked using some 
user defined preference criteria or the user may be consulted directly to select the 
most optimum amongst them. 

3.2   Approximate Matchmaking 

Now, let us consider the scenario where the matchmaking is unsuccessful, that is, 
there does not exist a set of providers capable of executing a set of component  
services. Given this, it makes sense to allow some inconsistency while selecting a 
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provider. Note that inconsistency is often allowed by real-life systems, e.g., flight 
reservation system allow flights to be overbooked, but only up to a limited number of 
seats. Thus, the key here is “bounded” inconsistency. Basically, for a given set of 
component services SC = {ASC1, ASC2, …, ASCn}, the selected provider for one of the 
component services ASCx does not have to be a perfect match as long as their accumu-
lated inconsistency is within a specified limit. Again (in the presence of non-
determinism), the given set SC of component services implies that all the services in 
SC will be executed if at least one of the services in SC is executed (related services). 
Note that the inconsistency induced by a component service ASCx may also have a 
counter effect on (reduce) the inconsistency induced by another component service 
ASCy. We use the composition schema CS in Fig. 4 as a running example to illustrate 
our intuition behind the steps. X enclosed by a rectangle denotes a component service 
X of CS. Services can be invoked in sequence (D, E) or in parallel (B, C). As before, 
ovals represent choices. 

A 

B 

C 

D 

F 

E 

G 
 

Fig. 4. Sample composition schema CS 

For each set of component services SC = {ASC1, ASC2, …, ASCn} considered for 
matchmaking, perform the following: 

1. Determine the common qualifiers: A qualifier qSC is common for SC if a pair of 
constraints of services ASCx and ASCy, respectively, are based on qSC. For example, 
if component services D and E need to be completed within 3 and 4 days, respec-
tively; then D and E have constraints based on the common qualifier time. Studies 
[14] have shown that most constraints in real-life scenarios are based on the quali-
fiers: price, quantity or time. 

2. For each qSC, define a temporary variable CqSC (to keep track of the inconsistency 
with respect to qSC). Initially, CqSC = 0. 

3. For each ASCx and a common qualifier qSC: Let vqSCx denote the constraint value of 
ASCx with respect to qSC. For example, vtD = 3 denotes the completion time con-
straint value of D. Delete the constraint of ASCx, based on qSC, from the goal. 

4. Perform matchmaking on the reduced goal (as discussed earlier in the previous 
sub-section). 

5. If the matchmaking (above) is successful: [Note that if matchmaking is unsuccessful 
for the reduced goal then it would definitely have been unsuccessful for the original 
goal.] Let p(ASCx) denote the provider selected to execute ASCx. For each deleted 
constraint of ASCx based on qSC (step 3), get the best possible value vbest_qSCx  
of p(ASCx) with respect to qSC and compute CqSC = CqSC + (vqSCx - vbest_qSCx). For  
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example, let us assume that p(D) and p(E) can complete their work in 5 and 1 days, 
respectively. Given this, Ct = 0 + (vtD - vbest_tD) + (vtE - vbest_tE) = (3 - 5) + (4 - 1) = 1. 

6. The selections as a result of the matchmaking in step 4 are valid if and only if, for 
all qSC, CqSC > 0. For example, p(D) and p(E) are valid matches for the component 
services D and E, respectively, as Ct > 0. 

Note that this matching would not have been possible without the above extension 
as p(D) violates (takes 5 days)  the completion time constraint (3 days) of D. 

AXML application scenario. We consider a replicated architecture where copies of an 
AXML document d exist on more than one peer. With respect to each document d, there 
exists a primary copy of d (and the rest are referred to as secondary copies). Any up-
dates on d occur on the primary copy of d, and are propagated to the secondary copies in 
a lazy fashion. Let us assume that the system guarantees a maximum propagation delay 
(of any update to all secondary copies of the affected document) of 1 hour. Given this, a 
query of the form “List of hotels in Rennes” can be evaluated on any of the secondary 
copies (that is, inconsistency is allowed). However, a query of the form “What is the 
current traffic condition on street X?” needs to be evaluated on the primary copy (that is, 
no inconsistency) or the system needs to be tuned to lower the maximum propagation 
delay guarantee (that is, inconsistency up to a bounded limit). 

4   Related Works 

The concept of “constraints” has been there for quite some time now, especially, in 
the field of Software Engineering as functional and non-functional features associated 
with components [15]. While studies [16] have identified their need with respect to 
Web services computing, there hasn’t been much work towards trying to integrate 
them in a model for Web services composition. [17] and [18] describe preliminary 
works towards integrating the notion of constraints with WSDL/SOAP and OWL-S, 
respectively. However, their focus is towards trying to represent the operational speci-
fications (e.g., if a service supports the Two Phase Commit protocol, authentication 
using X.509, etc.) of a Web service using features/constraints  in contrast to our  
approach of trying to capture the functional requirements for a successful execution. 

[19] allows each activity to be associated with a constraint c, which is composed of 
a number of variables ranging over different domains and over which one can express 
linear constraints. In [20], Vidyasankar et. al. consider “bridging” the incompatibility 
between providers selected (independently) for the component services of a compos-
ite service. In general, the issue of Web services discovery has been studied widely in 
literature based on different specification formalisms: Hierarchical Task Planning 
(HTN) [1], Situation Calculus [21], π-Calculus [22], etc. However, none of the above 
approaches consider composability of the component services’ constraints (which is 
essential to reason about the constraints of the composite service). The notion of 
bounded inconsistency and its application to matchmaking is also a novel feature of 
our work. 
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5   Conclusion and Future Work 

In this work, we focused on the discovery aspect of Web services compositions. To 
enable hierarchical composition, it is required to capture and publish the constraints of 
the composite services (along with, and in the same manner, as primitive services). 
We introduced a constraints based model for Web services description. We showed 
how the constraints of a composite service can be derived and described in a consis-
tent manner with respect to the constraints of its component services. We discussed 
four approaches: optimistic, pessimistic, probabilistic and relative, to overcome the 
composition issues introduced by the inherent non-determinism. Finally, we discussed 
matchmaking for the constraints based description model. We showed how the notion 
of bounded inconsistency can be exploited to make the matchmaking more efficient. 

An obvious extension of the matchmaking algorithm would to consider simultane-
ous matching for more than one composite service. Doing so, leads to some interest-
ing issues like efficient scheduling of the available providers (touched upon briefly in 
section 2.2.3). We are already working towards translating the proposed concepts (in 
this paper) to compose service descriptions specified in OWL-S. In future, we would 
also like to consider the top-down aspect of constraint composition, that is, to define 
the constraints of a composite service independently and verifying their consistency 
against the constraints of its corresponding component services. 

Acknowledgments. I would like to thank Krishnamurthy Vidyasankar, Blaise Genest, 
Holger Lausen and the anonymous referees for their helpful suggestions which helped 
to improve the paper considerably. 
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Abstract. The adequate representation of emotions in affective com-
puting is an important problem and the starting point of studies related
to emotions. There are different approaches for representing emotions,
selecting one of this existing methods depends on the purpose of the
application. Another problem related to emotions is the amount of dif-
ferent emotional concepts which makes it very difficult to find the most
specific emotion to be expressed in each situation. This paper presents
a system that reasons with an ontology of emotions implemented with
semantic web technologies. Each emotional concept is defined in terms
of a range of values along the three-dimensional space of emotional di-
mensions. The capabilities for automated classification and establishing
taxonomical relations between concepts are used to provide a bridge be-
tween an unrestricted input and a restricted set of concepts for which
particular rules are provided. The rules applied at the end of the pro-
cess provide configuration parameters for a system for emotional voice
synthesis.

1 Introduction

An important challenge in addressing issues of affective computing is having an
adequate representation of emotions. Existing approaches vary between identi-
fying a set of basic categories - with a name tag assigned to each one of them - to
designing a multi-dimensional space in terms of primitive elements - or emotional
dimensions - such that any particular emotion can be defined in terms of a tuple
of values along the different dimensions. For different purposes, one approach is
better suited than the other. For instance, when attempting to synthesize voice
utterances that reflect emotion to some extent, it is easier to identify the pa-
rameters for voice production associated with conveying a particular emotion.
For assigning emotional values to given utterances, on the other hand, human
evaluators find it much easier to provide numbers along given dimensions. If one
were to operate computationally with a representation of emotions expressed in
more than one format, one is faced with the task of being able to convert from
one to another. This task is reasonably easy when converting from emotional
categories to emotional dimensions: it would suffice to assign a particular tuple
of values for the emotional dimensions of each emotional category. When trying
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to convert from emotional values expressed in terms of emotional dimensions
to a representation in terms of emotional categories this is not so simple. The
problem lies in the fact that, given the subjectivity associated with emotional
perception, the particular values assigned to a given impression by one person
usually deviate slightly from what a different person would have assigned. This
suggests that the process of converting from emotional dimensions to emotional
categories should be carried out in a manner that allows a certain tolerance, so
that a region of space in the universe of emotional dimensions is assigned to each
emotional category, rather than just a single point in the universe.

A separate problem arises from the fact that there is a large number of emo-
tional categories, and the differences and similarities between them are not clear
cut. In some cases, it is reasonable to assume that certain emotional categories
may be subsumed by others. For example, the emotion anger subsumes the emo-
tions sulking, displeasure and annoyance which may be seen as different types
of anger. This suggests that a taxonomy of emotional categories as a hierar-
chy might be useful in finding correspondence between more specific emotional
categories and more general emotional categories.

In this context, the development of an ontology of emotional categories based
on description logics, where each element is defined in terms of a range of values
along the space of emotional dimensions, provides a simple and elegant solution.
The ability to carry out automatic classification of concepts simplifies the addi-
tion of new concepts - possibly expressed only in terms of their values along the
axes of emotional dimensions - without having to worry explicitly about where
in the ontology they should be placed. Thanks to a taxonomical reasoning sys-
tem an implicit hierarchy for the concepts represented in the ontology can be
inferred automatically.

This paper describes the development of such a system, together with its ap-
plication as an interface between a text input marked up in terms of emotional
dimensions and a set of rules for configuring an emotionally-enabled voice syn-
thesizer. By reasoning over the ontology, insertion of new instances of emotional
concepts into the ontology results in their automatic classification under the
corresponding branch of the hierarchy. The system can then trace the ascen-
dants in the ontology of the corresponding value, until a more general concept is
found that satisfies the condition that specific rules are available for generating
an appropriate voice synthesis configuration for expressing the intended emo-
tional impression. Section 2 provides a basic introduction to the representation
of emotions. Section 3 summarises the Semantic Web technologies employed in
this approach. Section 4 describes how input texts are tagged with information
describing their emotional content in terms of emotional dimensions. Section 5
gives an overview of the ontology of emotions we have developed. Section 6 de-
scribes the operation of the emotional synthesizer. Section 7 provides an example
of the complete process for a particular input. Finally, section 8 discusses the
technological issues that have arisen, and section 9 summarises our conclusions
and future work.
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2 State of the Art: Representation of Emotions

This section provides a brief review of the different methods used in the study
of emotions in order to classify them. Interested readers can find more detail in
the work of Randolph Cornelius [1] and Marc Schröder [2].

Emotions are not an easy reaction, there are a lot of factors that contribute
to them. For Izard [3] a good definition of Emotion must take into account:
conscious feeling of emotion, process which takes place in the nervous system
and in the brain and expressive models of emotion. Emotions take place when
something unexpected happens and the so-called “emotional effects” begin to
take control.

Many of the terms used to describe emotions and their effects are difficult
to tell apart from one another, as they are usually not well defined. This is
due to the fact that the abstract concepts and the feelings associate with such
concepts are very difficult to express with words. For this reason, there are a lot
of methods for describing the characteristics of emotions.

There are different methods in order to represent emotions: emotional cat-
egories - based on the use of emotion-denoting words -, descriptions based on
psychology [4] and evaluation [1], circumflex models - emotional concepts are
represented by means of a circular structure [5], so that two emotional cate-
gories close in the circle are conceptually similar - and emotional dimensions
which represent the essential aspects of emotional concepts.

In the following subsections we describe in detail the two methods which are
employed in our work: emotional categories and emotional dimensions.

Emotional Categories. The most common method for describing emotions is
the use of emotional words or affective labels. Different languages provide as-
sorted labels of varying degrees of expressiveness for the description of emotional
states. There are significant differences between languages in terms of the granu-
larity with which these labels describe particular areas of emotional experience.
Even within a given language, some areas of emotional experience have a higher
density of labels than others. This diversity presents an additional difficulty. A
lot of methods have been proposed in order to reduce the number of labels used
to identify emotions. Some of them are listed below:

– Basic emotions: There is a general agreement that there are some emotions
that are more basic than others. The number of basic emotions generally
is small (in early studies 10, in more recent ones between 10 and 20), so it
is possible to characterize each emotional category in terms of its intrinsic
properties [1].

– Super ordinate emotional categories: Some emotional categories have been
proposed as more fundamental than others on the grounds that they include
the others. Scherer [6] and Ortony suggest that an emotion A is more fun-
damental than other emotion B if the set of evaluation components of the
emotion A are a subset of the evaluation components of the emotion B.

– Essential everyday emotion terms: A pragmatic approach is to ask for the
emotion terms that play an important role in everyday life. The approach is
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exemplified by the work of Cowie [7], who proposed a Basic English Emo-
tion Vocabulary. Starting from lists of emotional terms from the literature,
subjects were asked to select a subset which appropriately represents the
emotions relevant in everyday life. A subset of 16 emotion terms emerged.

Emotional Dimensions. Emotional dimensions represent the essential aspects
of emotional concepts. There are two basic dimensions: evaluation and activation,
occasionally these two dimensions are completed with a third dimension: power.
Evaluation represents how positive or negative is an emotion. For example in
a scale for the evaluation dimensions at one extreme we have emotions such as
happy, satisfied, hopeful . . . the other end of the scale is for emotions such as
unhappy, unsatified, despaired . . . Activation represents an active / passive scale
for emotions, at one extreme of the activation are emotions such as excited,
aroused . . . At the other end of this scale are emotions such as calm, relaxed . . . .
The last dimension, power, represent the control which exerts the emotion, at one
end of the scale we have emotions characterized as completely controlled, such as
care for, submissive . . . At the opposite end of this scale we have emotions such
as dominant, autonomous . . . For all dimensions, if the emotion is completely
neutral with respect to the emotional dimensions it should be assigned to the
middle point of the scale.

This method is very useful because it provides a way of measuring the simi-
larity between emotional states. Another important property of that method is
that shifting the representational weight away from the actual labels employed
allows for a relative arbitrariness when naming the different dimensions.

3 State of Art: Semantic Web Technologies

The Semantic Web is being developed with the intention of providing a global
framework for describing data, its properties and relationships in a standard
fashion. Many developers and researchers on knowledge systems are taking the
approach of using Semantic Web technologies in order to obtain more interoper-
ability and reusability with existing software and to take advantage of the strong
trend of development that these technologies are living nowadays.

In this section we review the tools used in our project explaining what were
the technological choices and the different criteria behind them.

Ontology Web Language. Semantic Web relies heavily on ontologies. Con-
cretely, ontologies based on Description Logics paradigm include definitions of
concepts –OWL classes–, roles –OWL properties– and individuals. The most
common language to formalize Semantic Web ontologies is OWL (Ontology Web
Language [8]), a proposal of the W3C. The goal of this standard is to formalize
the semantics that was created ad hoc in old frame systems and semantic net-
works. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL
DL, and OWL Full.

OWL Full is powerful for representing complex statements but not useful for
reasoning with them due to their computational properties.
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OWL DL is the subset of OWL designed for applications that need the maxi-
mum expressiveness without losing computational completeness and decidability.
It is based on Description Logics, a particular fragment of first order logic, in
which concepts, roles, individuals and axioms that relate them (using universal
and existential restrictions, negation, etc.) are defined. These entailments may
be based on a single document or multiple distributed documents that we com-
bine using the import OWL mechanisms. The OWL DL reasoning capabilities
relies on the good computational properties of DLs. OWL DL has support for
polihierarchical automatic classification.

Frameworks and APIs. The first thing a novice Semantic Web application
developer is searching for is an all-in-one framework or a versatile application
programming interface. Java is probably the most important general-purpose
language for developing Semantic Web applications, and it is also the language
in which the original voice synthesizer was made, so the choice was obvious. But
there are at least two very promising Java frameworks available. One of them
is Sesame [9], an open source RDF framework with support for RDF Schema
inferencing and querying. The other one is Jena [10], another open source frame-
work with a programmatic environment for RDF, RDFS, OWL, SPARQL and
its own rule-based inference engine.

Sesame has a local and remote access API, several query languages (recently
added SPARQL) and it is more oriented to offer flexible and fast connections
with storage systems.

Jena has also RDF and OWL APIs, tools to deal with RDF/XML, N3 and
N-Triples formats, an SPARQL query engine and also some persistent storage
functionality.

For our purposes performance issues can be ignored and only inference sup-
port for Description Logics is taken into account. The architecture of Sesame is
probably easier to extend than the architecture of Jena, but from the point of
view of a client building a wrapper for Jena has been the easiest way of working.

DLModel [11] is a very straightforward open source API for accessing a De-
scription Logic model instanciated in an external ontology and knowledge base.
Although it has an abstract DL interface (called DLModel), it can act as a
wrapper on top of Jena (called JenaModel), offering simple methods to access
concepts, roles and invididuals of the knowledge base of our Java application .

Ontology Editor. Another important tool is the Integrated Development En-
vironments (IDE) used to edit the ontology and the knowledge base. During our
review of the state-of-art we found two interesting editors able to perform this
task: SWOOP and Protégé.

SWOOP [12] is a hypermedia-based OWL ontology browser and editor written
in Java. Is is open souce and it tries to simplify the ontology development using
an interface similtar to a web browser. It includes some advanced features as
ontology partitioning, debugging and different kinds of visualization, so it makes
ontologies more scalable, maintainable and easy to use.
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Protégé [13], specially the Protégé-OWL version, focuses on editing OWL
ontologies. It is a powerful Java open source tool with a user-friendly interface
that let you edit and visualize ontologies in a very easy way. It can be seen as
a framework for developing Semantic Web applications itself. The number of
plugins (including some plugins for knowledge adquisition), the stability of the
last version, the extensibility of its architecture (plug-and-play environment)
software allows rapid prototyping and application development, just what we
were looking for. But this choice was not an easy decision.

Reasoner. Two different reasoners were considered for this project: Pellet [14]
and Racer Pro [15].

Pellet is an open source DL reasoner completely implemented in Java. It deals
not only with taxonomical reasoning but also with datatype reasoning, which
is very important for our project. Pellet is the default reasoner integrated with
SWOOP.

Compared to Racer Pro, a well-know commercial system for OWL/RDF which
claims to be the most efficient and robust DL reasoner available, Pellet may have
drawbacks, but ignoring again the problem of performance, Pellet is certainly
one of the most feature-rich OWL reasoners. It is also supported by a strong
development team and community, which is important if you are looking for
different approaches and uses of the same tool. There are educational licenses
for Racer Pro, but we have chosen Pellet as a tool for our prototype.

4 Tales Marked Up with Emotions

As a starting point of our approach we have some texts marked up with emo-
tions. In these texts every emotional unit is marked up with the three emotional
dimensions (activation, evaluation and power). We are currently using as emo-
tional units the sentences of the text. This implies that every sentence has a
value for each of the three dimensions. The emotions associated to each of the
sentences try to rate how the listener will feel while listening each sentence as it
is read out aloud by the synthesizer.

Texts are marked up with emotions by means of EmoTag [16] a tool for
automated mark up of texts with emotional labels. The approach considers the
representation of emotions as emotional dimensions. A corpus of example texts
previously annotated by human evaluators was mined for an initial assignment
of emotional features to words. This results in a List of Emotional Words (LEW)
which becomes a useful resource for later automated mark up. EmoTag employs
for the assignment of emotional features a combination of the LEW resource,
the ANEW word list [17]1, and WordNet [18] for knowledge-based expansion of
words not occurring in either.

A sample part of a marked tale by EmoTag is given in Table 1.
1 The ANEW word list is a set of normative emotional ratings for a large number of

words in the English language. Words are rated in terms of evaluation, activation
and power.
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Table 1. Fragment of a Marked Up Tale

...

<emotion act=9 eval=7 pow=5>"How well you are looking today: how glossy your feathers; how

bright your eye."</emotion>

<emotion act=9 eval=7 pow=5>"I feel sure your voice must surpass that of other birds, just

as your figure does;</emotion>

<emotion act=9 eval=7 pow=5>let me hear but one song from you that I may greet you as the

Queen of Birds."</emotion>

<emotion act=3 eval=9 pow=1>The Crow lifted up her head and began to caw her best, but the

moment she opened her mouth the piece of cheese fell to the ground, only to be snapped up

by Master Fox.</emotion>

...

5 Emotional Ontology

We have developed an ontology for all the emotional categories. They are struc-
tured in a taxonomy that covers from the basic emotions to the most specific
emotional categories. Each of the emotional categories are related with the three
emotional dimensions by means of data ranges.

5.1 Structure

Our ontology has two root concepts:

– Emotion: This is the root for all the emotional concepts which are used to
refer to emotions. Each of the emotional concepts are subclasses of the root
concept Emotion. Some examples of these subclasses are: Anger, Annoyance,
Displeasure, Sad, Happy, Surprise, Fright, Horror . . .

– Word: This is the root for the emotion-denoting words, the specific words
which each language provides for denoting emotions. Our ontology is cur-
rently available for two different languages: English and Spanish. In order to
classify the words into their corresponding language the root concept Word
has two subclasses: EnglishWord and SpanishWord.

As instances of the EnglishWord and SpanishWord subclasses there are
emotion-denoting words, which are all the words used for denoting Anger, An-
noyance, Displeasure, Terror . . . Each of these instances has two parents: a con-
cept from the Emotion hierarchy (which indicates the type of abstract emotion
denoted by the word) and a concept from the Word hierarchy (which indicates
the language of the word).

It is important to note here that, because the ontology is intended to operate
over input in the form of language utterances, the ontology must include the
means for representing words. Therefore it includes the specific concept of Word.
All actual words handled by the system must be instances of this concept or one
of its subclasses. Specific subhierarchies are added to group together all words
in a given language.

Figure 1 shows a fragment of the ontology. In this fragment it can be seen how
the words are related both to one emotional concept and to one word concept, for
example the word unhappiness is an instance of the emotional concept Sadness
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Fig. 1. Fragment of the emotional ontology

at the same time it is an instance of the word concept EnglishWord, which means
that unhappiness is an English word for denoting the emotion sadness.

Another valid way of representing these relations might be to create a new
property called “language” to connect each word with an instance of the language
it belongs. We have chosen the in-built “type” relation because individuals with
many different types are considered natural in OWL DL, and it is easier to
retrieve every word of a specific type than “every word that has a relation with
a specific individual”.

In handling words, the system may need to identify synonyms for a particular
words, that is, other words which may be used to refer to the same concept. Given
the semantics we have chosen for our ontology, two instances of the Word-concept
can be considered to be synonyms if they are also instances of the same single
Emotion-concept from the parallel Emotion subhierarchy. For example, in the
figure above, we can find that the words annoyance and irritation are synonyms
because they are both instances of the Emotion-concept Annoyance.

5.2 Datatype Properties

Once we have a hierarchy of emotions, relations between the emotion-denoting
words and their language and the concept they represent, we want to link the
emotional concepts with the three emotional dimensions. Numeric data can be
represented in OWL using datatype properties. To achieve this we have declared
three datatype properties: hasEvaluation, hasActivation and hasPower. Each of
the emotional concepts is defined by specifying appropriate data ranges for these
properties as described in the following section.

5.3 Data Range

We have defined each of the emotional concepts through the emotional dimen-
sions defined as datatype properties. Each emotional concept takes up a region



96 V. Francisco, P. Gervás, and F. Peinado

in the three-dimensional space of emotional dimensions. In order to describe this
with the datatype properties we have to define our own datatype restrictions,
because we are using specific intervals between numbers of type float. This can
be done using data range definitions.

For example, we have the Anger emotional concept, we can describe the re-
gion of the space associated to it in the following way: 7<=hasActivation<=10,
0<=hasEvaluation<=3, 3<=hasPower<=5.

The fragment of the OWL file which correspond to the data range for the
hasActivation property is shown in Table 2.

Table 2. Fragment of the OWL Ontology

<owl:Restriction>

<owl:allValuesFrom>

<owl:DataRange>

<owl:onDataRange rdf:resource=‘‘http://www.w3.org/2001/XMLSchema#float’’/>

<owl:minInclusive rdf:datatype=‘‘http://www.w3.org/2001/XMLSchema#float’’>

7.0</owl:minInclusive>

</owl:DataRange

</owl:allValuesFrom>

<owl:onProperty>

<owl:FunctionalProperty rdf:about=‘‘#hasActivation’’/>

</owl:onProperty>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty>

<owl:FunctionalProperty rdf:about=‘‘#hasActivation’’/>

</owl:onProperty>

<owl:allValuesFrom>

<owl:DataRange>

<owl:onDataRange rdf:resource=‘‘http://www.w3.org/2001/XMLSchema#float’’/>

<owl:maxInclusive rdf:datatype=‘‘http://www.w3.org/2001/XMLSchema#float’’>

10.0</owl:maxInclusive>

</owl:DataRange>

</owl:allValuesFrom>

</owl:Restriction>

In this way, by means of the data ranges on the datatype properties, the
link between the abstract emotional concepts and the three-dimensional space
of emotional dimensiones is established.

5.4 Automatic Classification of Emotions Using Datatype
Properties

A requirement to be taken into account when representing emotions using nu-
merical data is to have some reasoning device capable of processing such data in
an appropriate way. Pellet is able to classify concepts with restrictions formed
by combinations of user-defined datatypes.

Once we have defined the emotional concepts by means of the emotional
dimensions, Pellet automatically classifies the concepts into a hierarchy of emo-
tional concepts. This means that Pellet obtains a hierarchy of emotions in which
the most basic concepts are at the top of the hierarchy and the concepts which
are more specific appear as descendants of the more general ones.
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Datatype properties transform the classification of the emotional concepts into
a relatively simple task. It is not necessary for the designer of the ontology to
know which concepts are more specific than others because it is the reasoner that
carries out the task automatically. For example, we have the following emotional
concepts: Anger, Annoyance, Fury and Indignation. Anger is one of the basic
emotions and Annoyance, Indignation and Fury are different forms of anger that
differ from one another in their intensity of arousal. We define the four concepts
as subclasses of the root concept Emotion, and we define the following ranges
for the three datatype properties:

– Anger: 7<=hasActivation<=10;0<=hasActivation<=3;3<=hasPower<=5
– Annoyance: 7<=hasActivation<8;0<=hasActivation<=3;3<=hasPower<=5
– Indignation:8<=hasActivation<9;0<=hasActivation<=3;3<=hasPower<=5
– Fury: 9<=hasActivation<=10;0<=hasActivation<=3;3<=hasPower<=5

Just by loading the ontology in DLModel, the reasoner automatically classifies
the concepts Annoyance, Indignation and Fury as subclasses of the emotional
concept Angry which is automatically identified as more general.

6 Emotional Synthesizer

EmoSpeech [19] is a system capable of modulating the voice quality of a syn-
thesizer while reading out aloud children’s tales, so that the voice conveys at
least part of the emotions expressed by the corresponding text. This is achieved
by controlling those parameters in the synthesizer that have been identified as
having more relevance in the expression of emotions in human voice. EmoSpeech
operates with five basic emotions:anger, happiness, sadness, fear and surprise.
The aspects of the voice that act as personality identifiers are: volume, rate,
pitch baseline and pitch range. EmoTag uses a group of rules which relates the
five basic emotions to the specific changes on voice parameters involved in the
communication of emotion in human voice utterances. The values of these pa-
rameters for every emotion were obtained by refining an original proposal by
Schröder [2], based on the analysis of emotional material generated by actors.
The optimal values were obtained through the systematic variation of the pa-
rameters during the synthesis. Table 3 summarizes the rules of the synthesizer
for the basic emotions.

Table 3. Configuration Parameters for Emotional Voice Synthesis

Volume Rate Pitch Baseline Pitch Range

Anger +10% +21% +0% +173%
Surprise +10% +0% +25% +82%
Happiness +10% +29% +35% +27%
Sadness -10% -8% -10% -36%
Fear +10% +12,5% +75% +118%
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7 Example of the Entire Process

The complete process from text input to voice output is described in this section.
Wehave a text as the input of our system.EmoTagmarks up this textwith the emo-
tional dimensions (activation, evaluation and power). Each sentence of the marked
up text is related to a point in the three-dimensional space of emotions. This point
is the input to our ontology of emotions, which by means of the datatype prop-
erties and the dataRange restrictions, automatically classifies this point under a
given emotional concept. Once we have identified the specific emotional concept

Fig. 2. Example of the entire process
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to which the input point is related, by means of DLModel we recursively obtain its
ancestors until we locate the one which correponds to one of the five basic emotions
(anger, happiness, sadness, fear and surprise). Using the particular configuration
of parameters for that particular basic emotion, the synthesizer reads out aloud the
text with the emotion assigned by EmoTag to the sentences.

In Figure 2 we can see how this process works for a concrete example.
In the example, we have a sentence of input text which EmoTag marks up with

the following values: activation = 7, evaluation = 1 and power = 5. This point
is classified by means of the ontology under the annoyance emotional concept.
We ask DLModel for the parents of annoyance and the anger emotional concept
is returned. EmoSpeech then receives the sentence of the input text and the
emotion anger as the one associated to the sentence, so it selects the rules
corresponding to this basic emotions. Once EmoSpeech has the suitable rules
for the emotional meaning of the sentence, the synthesizer reads out aloud the
sentence in an angry way.

8 Discussion

Because the ontology is being used only as interface between the emotional mark
up application and the voice synthesizer, its effect on the quality of speech output
is limited.2 For inputs originally tagged with emotional categories, the addition
of the ontology has little impact. Nevertheless, emotional categories as a method
of representing emotions provide only very limited granularity, restricted to the
five basic emotions. On the other hand, emotional dimensions provide a much
more flexible means of representing emotions, with greater expressive power.
The main obstacle in switching from one representation to another lies in the
fact that there is no easy way of converting from emotional dimensions to voice
synthesizer configurations. At best, the three dimensional space of emotional di-
mensions could be partitioned into restricted volumes of space, and a particular
configuration of the synthesizer assigned to each volume. The option of using
a description logic ontology - and the associated abilities to carry out instance
recognition and automatic classification - as an interface to achieve this conver-
sion as proposed in this paper, presents two distinct advantages:

– It provides a method for the automatic association of any point in the three
dimensional space to whatever is the closest available configuration of the
speech synthesizer, based on information that is defined at the conceptual
level - even if it relies on an underlying level of geometrical representation.

– Any subsequent refinement of the set of configurations available for the syn-
thesizer - for instance, if the existing configurations are refined into a larger
set of options by fine tuning them to better represent more specific emotions
-, it would be enough to associate the new configurations to the correspond-
ing concepts, and to refine the search algorithm to stop at the first ancestor
that has some configuration data associated to it.

2 The quality and emotional precision of the resulting voice has been discussed else-
where. Details can be found in [19].
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Regarding the technologies that have been applied in this proposal, some of
these are not generally accepted as standard. Datatypes (and “reasoning” with
numbers and strings) are not part of the essence of Description Logics. OWL
DL considers datatypes properties disjoint with every object property. It seems
that in the next version of OWL (1.1) support for datatypes is going to be im-
proved, because they are useful for many applications. But the current version
of OWL just supports some standard XML Schema datatypes and not a stan-
dard solution for representing user-defined datatypes. DIG 1.1, being a standard
designed for the communication with DL reasoners, does not accept restrictions
over datatype properties. This obstacle makes it impossible for us to send an
ontology that includes such restrictions directly from Protégé to Pellet for its
automatic classification. DIG 2.0, with support for the new OWL 1.1 will offer
those features, but for now other shortcuts must be used in order to reason with
restrictions on datatype properties . Protégé 3.2.1 now has a proprietary solution
to represent user-defined datatypes, which allows the creation of restrictions with
interesting datatype properties and even visualization of the limits of a numeric
interval and things like that in the GUI. However, DIG does not allow that kind
of information to travel to a DL reasoner. Pellet 1.4, by itself, can deal with
user-defined datatype restrictions, and now the last version supports the inline
syntax proposed by OWL 1.1 3 So because we are using Protégé as the editor
for our ontology and knowledge base, we have to edit the files manually to add
those restrictions before loading everything in DLModel using the “Pellet-Java”
default configuration. We hope that some of these shortcomings might be solved
in later versions of the technologies.

9 Conclusions

An emotional ontology based on description logics has been implemented using
semantic web technologies. Each emotional concept is defined in terms of a range
of values along the three-dimensional space of emotional dimensions, that allows
the system to make inferences concerning the location of new concepts with re-
spect to the taxonomy. This constitutes a valid solution to the problem of finding
a relationship between an arbitrary point in a space of emotional dimensions and
the set of basic emotional categories usually identified with specific names. The
importance of being able to identify such relationships is strengthened by the fact
that configuration of synthesizer parameters for artificially producing emotional
voice tends to be established in terms of basic emotional categories.

The ontology described in this paper has demonstrated its usefulness as part
of a complex process of converting unmarked input text to emotional voice,
resolving the problems that originated at the interface between the emotional
tagging in terms of emotional dimensions and the synthesis of emotional voice
in terms of basic emotional categories. In this process, both the capability for
automatic classification provided by the reasoner, and the hierarchical structure
provided by the ontology played important roles.
3 http://owl1 1.cs.manchester.ac.uk/owl specification.html#4.3
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Although reasoning support for datatype properties in OWL DL is still not
standard, technologies are available that let us experiment with these features
and allow us to develop affective computing applications like the emotional voice
synthesizer described in the paper. OWL, Jena, DLModel, Protégé and Pellet
are the choices we made before developing this new iteration of the software.

Still more improvements are needed in editors as Protégé to be compati-
ble with reasoners as Pellet. Testing SWOOP is going to be one of our next
steps in order to facilitate the adquisition of knowledge for the emotional
knowledge base.
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Abstract. WSML presents a framework encompassing different language vari-
ants, rooted in Description Logics and (F-)Logic Programming. So far, the pre-
cise relationships between these variants have not been investigated. We take the
nonmonotonic first-order autoepistemic logic, which generalizes both Descrip-
tion Logics and Logic Programming, and extend it with frames and concrete do-
mains, to capture all features of WSML; we call this novel formalism FF-AEL.
We consider two forms of language layering for WSML, namely loose and strict
layering, where the latter enforces additional restrictions on the use of certain lan-
guage constructs in the rule-based language variants, in order to give additional
guarantees about the layering. Finally, we demonstrate that each WSML variant
semantically corresponds to its target formalism, i.e. WSML-DL corresponds to
SHIQ(D), WSML-Rule to the Stable Model Semantics for Logic Programs (the
Well-Founded Semantics can be seen as an approximation), and WSML-Core to
DHL(D) (without nominals), a Horn subset of SHIQ(D).

1 Introduction

The Web Service Modeling Language WSML1 [6] is a language for modeling ontolo-
gies and Web services. In this paper we are only concerned with WSML ontologies.
Thus, when referring to WSML in the remainder, we mean WSML ontologies. Refer-
ences to the ongoing work on the semantics of the functional and behavioral description
of Web services can be found in [5].

WSML encompasses a framework of variants based on Description Logics [1] and
(F-)Logic Programming [8,9,13]. Each WSML variant has a target formalism: WSML-
Core is based on an intersection of the Description Logic SHIQ(D) and Horn Logic
(without equality), called DHL(D) [10]. WSML-DL captures the Description Logic
SHIQ(D). WSML-Flight is based on the Datalog subset of F-Logic, extended with
(locally) stratified negation, for which the Well-Founded and Stable Model Semantics
correspond [8,9]. WSML-Rule is based on F-Logic Programming, extended with nega-
tion under the Well-Founded Semantics [8]. WSML-Full extends both WSML-DL and
WSML-Rule towards first-order logic with nonmonotonic extensions.

WSML has two alternative layerings: Core ⇒ DL ⇒ Full and Core ⇒ Flight ⇒
Rule ⇒ Full. For both layerings, WSML-Core and WSML-Full mark the least and

� This work was partially supported by the European Commission under the projects Knowledge
Web (IST-2004-507482), DIP (FP6-507483), and SUPER (FP6-026850).

1 http://www.wsmo.org/wsml/wsml-syntax
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c© Springer-Verlag Berlin Heidelberg 2007

http://www.wsmo.org/wsml/wsml-syntax


104 J. de Bruijn and S. Heymans

most expressive variants, respectively. The original WSML specification [6] did not
demonstrate any semantic properties of this layering, nor did it include a specification
of the semantics for WSML-Full; this was considered an open research topic.

In this paper, we specify an abstract syntax for WSML logical expressions, and
define the WSML variants as subsets of this syntax. In order to give a semantics to
WSML-Full and to investigate the language layering features of WSML, we specify a
novel semantic framework for all WSML variants, based on first-order autoepistemic
logic (FO-AEL) [14,3], extended with frames [13] and concrete domains [2]. Our ap-
proach to concrete domains is a generalization of the approaches typically followed
in Description Logics [2] and Datalog [19]. We call this extended language FF-AEL.
We define the semantics of each individual WSML variant through an embedding in
FF-AEL. This embedding translates a given WSML description to FF-AEL, and, de-
pending on the language variants, includes a number of sentences which axiomatize the
semantics of certain WSML constructs. As an example, we show the difference in the
treatment of the subclass (subConceptOf ) construct in WSML-DL and WSML-Rule.

A subclass statement is of the form A ::B, where A, B are terms. In F-Logic, this
statement has an intentional (only if) semantics: whenever A ::B is true, then every
instance of A must be an instance of B. In Description Logics, however, subclass state-
ments (of the form A � B) have an extensional (if and only if) semantics: A � B is
true if and only if every instance of A is an instance of B. In order to guarantee the cor-
respondence between WSML-DL and Description Logics, this extensional semantics
needs to be axiomatized. However, such extensional semantics cannot be axiomatized
in a typical rules language such as WSML-Rule, because it would require universal
quantification in the body of a rule, which is beyond the expressiveness of a rules lan-
guage. For example, the following entailment is valid in WSML-DL and WSML-Full
(x :A stands for “x is an instance of A”):

∀x(x : A ⊃ x :B) |= A ::B,

whereas it is not valid in WSML-Rule.
This distinction between intentional and extensional treatment of language constructs

leads us to the definition of two approaches to language layering in WSML. When con-
sidering loose layering, a variant L2 is layered on a variant L1 if, considering an arbi-
trary theory of L1, every L1-formula which is a consequence under L1 semantics, is
also a consequence under L2 semantics. When considering strict layering, additionally
every L1-formula which is a consequence under L2 semantics must be a consequence
under L1 semantics. Considering these notions of language layering in the context of
OWL, we observe that OWL Lite and OWL DL are strictly layered, and that OWL DL
and OWL Full are not strictly, but loosely layered (cf. [12]).

It turns out that when considering strict language layering in WSML, certain restric-
tions on the use of ontology modeling constructs (e.g. subclass statements :: ) must be
enforced for the rule-based WSML variants.

In the remainder of the paper we first review the Description Logic SHIQ(D) in
Section 2. We proceed with our definitions of F-Logic with concrete domains, F-Logic
Programming, and FF-AEL, in Sections 3, 4, and 5. We then proceed to describe the
abstract syntax for WSML variants, and define strict and loose language layering, in
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Section 6. We demonstrate the correspondence between the variants and the intended
target formalisms in Section 7. Finally, we conclude the paper in Section 8.

2 The Description Logic SHIQ(D)

The signature Σ = 〈C,D,Ra,Rc,Fa,Fc〉 of a SHIQ(D) [1] language consists of
pairwise disjoint sets of concept (C), datatype (D), abstract role (Ra), concrete role
(Rc), individual (Fa), and data value (Fc) identifiers. SHIQ(D) descriptions are de-
fined as follows, with A a concept identifier, D a datatype identifier, C, C′ descriptions,
R, R′ role identifiers, S, S′ abstract role identifiers, U, U ′ concrete role identifiers, a, b
individual identifiers, o a data value identifier, and n a non-negative integer.

C, C′ −→ ⊥ | A | C � C′ | ¬C |� nS.C |� nU.D |� nS.C |� nU.D

A SHIQ(D) ontology is a set of axioms of the following forms.

C � C′ | S � S′ | U � U ′ | S ≡ S′− | (S)+ | C(a) | S(a, b) | U(a, o) | a = b | a �= b

Additionally, we have that in number restrictions � nS.C and � nS.C, S has to be
simple, i.e., S and its sub-roles may not be transitive (with (S)+ denoting transitivity).

For reasons of space, we do not present the SHIQ(D) semantics here, but refer
to [1]. Given a SHIQ(D) axiom φ (resp., ontology Φ), we denote the FOL-equivalent
of π (resp., Φ) with π(φ) (resp., π(Φ)); by [1] we know that such equivalents exist.

DHL(D) ([10]) is a Horn subset of SHIQ(D), which means that every DHL(D)
ontology is equivalent to a Horn theory. For the complete definition of DHL(D),
see [5].

3 Frame Logic with Concrete Domains

In this section we review F-Logic, following [4], and define a novel extension with
concrete domains, which is similar to, but more general than, the concrete domains
extensions usually considered in Description Logics [2] and Datalog [19].

A language L has a signature of the form ΣL = 〈F ,P ,FD,PD〉, with F and P
sets of function- and predicate-symbols, and FD and PD sets of concrete function and
predicate symbols, each with an associated arity n, which is a nonnegative integer; F
and FD (resp., P and PD) are pairwise disjoint. Notice that the symbols in F and P
do not have associated arities.

Let V be a set of variable symbols, disjoint from all sets of symbols in ΣL. Abstract
terms are constructed using symbols from F and V as usual. Concrete terms are con-
structed using symbols from FD and V . Terms are either abstract or concrete terms.
Abstract atomic formulas (atoms) are �,⊥ or are constructed from terms and symbols
in P in the usual way. Concrete atoms are constructed from concrete terms and symbols
in PD. Atoms are either abstract or concrete atoms. Molecules are isa molecules of the
form t1 : t2, subclass molecules of the form t1 :: t2, or attribute value molecules of the
form t1[t2 � t3], with t1, t2, t3 terms.

Formulas are constructed in the usual way from atoms and molecules using the sym-
bols ¬,∧,∨,⊃,≡, ∀, ∃, ), (, with the difference that abstract quantifiers are indexed
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with a (∃a, ∀a) and concrete quantifiers are indexed with c (∃c, ∀c). Finally, variables
quantified using an abstract quantifier (∃a, ∀a) may not occur in a concrete term or
atom.

An interpretation is a tuple I = 〈U, UD,≺U ,∈U , IF , IP , I→→〉. U and UD are dis-
joint non-empty countable sets, called the abstract and concrete domains, ≺U is an
irreflexive partial order over U ∪ UD, and ∈U is a binary relation over U ∪ UD.
We write a �U b when a ≺U b or a = b, for a, b ∈ U ∪ UD. For each inter-
pretation holds that if a ∈U b and b �U c then a ∈U c. Thus, if b �U c, then
{k | k ∈U b, k ∈ U ∪ UD} ⊆ {k | k ∈U c, k ∈ U ∪ UD}. We call the set
{k | k ∈U b, k ∈ U ∪ UD} the class extension of b. Thus, if b �U c, then the
class extension of b is a subset of the class extension of c. However, the converse of this
statement is not universally true.

An abstract function symbol f ∈ F is interpreted as a function over the domain U :
IF (f) : U i → U , for every i ≥ 0. An n-ary concrete function symbol f ∈ FD is
interpreted as a function over the domain UD: IF (f) : (UD)n → UD. An abstract
predicate symbol p ∈ P is interpreted as a relation over the domain U ∪ UD: IP (p) ⊆
(U ∪UD)i, for every i ≥ 0. An n-ary concrete predicate symbol p ∈ PD is interpreted
as a relation over the domain UD: IP (p) ⊆ (UD)n. I→→ associates a binary relation
over U ∪ UD with each u ∈ U ∪ UD: I→→(u) ⊆ (U ∪ UD) × (U ∪ UD).

A concrete domain scheme S is a tuple S = 〈US,FS,PS, ·S〉, where US is a
non-empty countable set of concrete values, FS and PS are disjoint sets of concrete
function and predicate symbols, each with an associated nonnegative arity n, and ·S is
an interpretation function which assigns a function fS : (US)n → US to every f ∈
FS and a relation pS ⊆ (US)n to every p ∈ PS. A language L with signature ΣL =
〈F ,P ,FD,PD〉 conforms to a concrete domains scheme S = 〈US,FS,PS, ·S〉 if
FD = FS and PD = PS. An interpretation I = 〈U, UD,≺U ,∈U , IF , IP , I→→〉 of L
conforms to S if UD = US, and IF (f) = fS, IP (p) = pS for every f ∈ FS, p ∈
PS, respectively. In the remainder we assume that every language conforms to the
concrete domain scheme under consideration. We illustrate the concept through the
definition of a concrete domain scheme for integers and strings.

Example 1. We define the concrete domain scheme S = 〈US,FS,PS, ·S〉 as fol-
lows: US is the union of the sets of integer numbers and finite-length sequences of
Unicode characters. FS is the union of the set of finite-length sequences of decimal
digits, optionally with a leading minus (-), and the set of finite-length sequences of
Unicode characters, delimited with " (for simplicity, we assume that the character "
does not occur in such strings), all with arity 0. PS consists of unary predicate sym-
bols integer and string, and the binary predicate symbol numeric-equals. The inter-
pretation function ·S interprets (signed) sequences of decimal digits and "-delimited
sequences of characters as integers and strings, respectively, in the natural way; ·S
interprets integer and string as the set of integers and strings; finally, ·S interprets
numeric-equals as identity over the set of integers.

Our approach to integrating concrete domains is a generalization of the usual
approaches to integrating concrete domains in Description Logics [2], as well as ex-
tensions such as [17], and Datalog [19] (where they are called built-ins). In DLs, all
predicate symbols are sorted (using the sorts abstract and concrete; binary predicates
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with the sort abstract × concrete are usually called features) and certain restrictions
apply on the concrete domain schemes in order to guarantee decidability of reasoning
and the existence of effective algorithms. In Datalog concrete predicates are only al-
lowed to occur in rule bodies, and variables must occur in abstract atoms in the body of
the rule; this guarantees the existence of effective terminating reasoning methods.

A variable assignment B assigns each variable x ∈ V to an individual xB ∈ U∪UD.
A variable assignment B′ is an abstract (resp., concrete) x-variant of B if xB′ ∈ U∪UD

(resp., xB′ ∈ UD) and yB′
= yB for y �= x. The interpretation of a term t in some I

with respect to some variable assignment B, written tI,B , is defined as: tI,B = tB if
t ∈ V , and tI,B = IF (f)(tI,B1 , . . . , tI,Bn ) if t is of the form f(t1, . . . , tn). A variable
substitution β, usually written in postfix notation, is a partial mapping from variable
symbols to ground terms. A variable substitution β is associated with (cf. [3]) a variable
assignment B if for every variable symbol x such that xB = k and there exists a ground
term t such that tI,B = k, then xβ = t′ for some ground term t′ such that t′I,B = k;
otherwise xβ is not defined.

Satisfaction of atomic formulas and molecules φ in I, given the variable assign-
ment B, denoted (I, B) |=f φ, is defined as: (I, B) |=f �, (I, B) �|=f ⊥, (I, B) |=f

p(t1, . . . , tn) iff (tI,B1 , . . . , tI,Bn ) ∈ IP (p), (I, B) |=f t1 : t2 iff tI,B1 ∈U tI,B2 , (I, B)
|=f t1 :: t2 iff tI,B1 �U tI,B2 , (I, B) |=f t1[t2→→t3] iff 〈tI,B1 , tI,B3 〉 ∈ I→→(tI,B2 ), and
(I, B) |=f t1 = t2 iff tI,B1 = tI,B2 .

This extends to arbitrary formulas as follows: (I, B) |=f φ1 ∧ φ2 (resp. (I, B) |=f

φ1 ∨ φ2, (I, B) |=f ¬φ1) iff (I, B) |=f φ1 and (I, B) |=f φ2 (resp. (I, B) |=f φ1 or
(I, B) |=f φ2, (I, B) �|= φ1); (I, B) |=f ∀ax(φ1) (resp. (I, B) |=f ∃ax(φ1)) iff for
every (resp. for some) B′a which is an abstract x-variant of B, (I, B′a) |=f φ1; (I, B)
|=f ∀cx(φ1) (resp. (I, B) |=f ∃cx (φ1)) iff for every (resp. for some) B′c which is a

concrete x-variant of B, (I, B′c) |=f φ1. If a variable x is quantified using a concrete
quantifier (∀c, ∃c), x is a concrete variable; otherwise, x is an abstract variable.

Given a concrete domain scheme S, an interpretation I is a model of a formula φ
if I conforms to S and for every variable assignment B, (I, B) |=f φ. A formula φ is
satisfiable if it has a model; φ is valid if every interpretation which conforms to S is a
model of φ. These notions extend to theories Φ ⊆ L in the natural way. A theory Φ ⊆ L
entails a formula φ ∈ L if every model of Φ is also a model of φ.

Contextual FOL is F-Logic without molecules. Classical FOL is contextual first-
order logic in which each function symbol and predicate symbol has one associated arity
n, which is a nonnegative integer. We denote satisfaction and entailment in classical
FOL with the symbol |=.

The following correspondence between SHIQ(D) and F-Logic ontologies is a
straightforward extension of a result in [4]. Given an FOL formula (resp., theory) φ
(resp., Φ), then δ(φ) (resp., δ(Φ)) is the F-Logic formula (resp., theory) obtained from
φ (resp., Φ) by replacing all atoms of the forms A(t) and R(t1, t2), where t, t1, t2 are
terms, with molecules of the forms t :A and t1[R � t2], respectively.

Proposition 1. Given a concrete domain scheme S, let Φ, φ be a SHIQ(D) theory
and formula, respectively. Then, Φ |= φ iff δ(π(Φ)) |=f δ(π(φ)).
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4 F-Logic Programs

Given a concrete domain scheme S and a language L with at least one 0-ary function
symbol, a rule is of the form

h ← b1, . . . , bm, not c1, . . . , not cn, (1)

where h, b1, . . . , bm, c1, . . . , cn are (equality-free) atoms or molecules, and h is not a
concrete atom. h is the head atom of r, B+(r) = {b1, . . . , bm} is the positive body
of r, and B−(r) = {c1, . . . , cn} is the negative body of r. If B−(r) = ∅, then r is
positive. If every variable in r occurs in an abstract atom in B+(r), then r is safe.
If a variable occurs in a concrete atom, it is a concrete variable; otherwise, it is an
abstract variable. The following rules axiomatize the semantics of subclass molecules:
(∗) x :: z ← x :: y, y :: z, (∗∗) x : z ← x :y, y :: z, and (∗ ∗ ∗) x ::x, where (*)
axiomatizes transitivity of the subclass relation; (∗∗) axiomatizes inheritance of class
membership; and (∗ ∗ ∗) axiomatizes the fact that every class is a subclass of itself2.
A normal F-Logic program P is a set of rules of the form (1) which includes the rules
(∗, ∗∗, ∗∗∗). If every rule r ∈ P is positive (resp., safe), then P is positive (resp., safe).

The Herbrand base of L is the set of ground atomic formulas and molecules of L.
Subsets of the Herbrand base are called Herbrand interpretations.

The grounding of a logic program P , denoted gr(P ), is the union of all possible
ground instantiations of P , obtained by replacing each abstract (resp., concrete) variable
in a rule r with a ground (resp., ground concrete) term of L, for each rule r ∈ P .

Let P be a positive program. A Herbrand interpretation M of P is a model of P if
M conforms to S, � ∈ M,⊥ /∈ M , and, for every rule r ∈ gr(P ), B+(r) ⊆ M
implies H(r) ∩ M �= ∅. A Herbrand model M is minimal iff for every model M ′ such
that M ′ ⊆ M , M ′ = M .

Following [9], the reduct of a logic program P with respect to an interpretation M ,
denoted PM , is obtained from gr(P ) by deleting (i) each rule r with B−(r) ∩ M �= ∅,
and (ii) not c from the body of every remaining rule r with c ∈ B−(r). If M is a
minimal Herbrand model of PM , then M is a stable model of P .

If P is a positive logic program, then the corresponding Horn F-Logic theory Φ is
obtained by replacing the arrow ← and comma (,) in every rule with the symbols ⊃ and
∧ in the usual way, and prefixing the formula with a concrete (resp., abstract) universal
quantifier (∀c or ∀a, resp.) for every concrete (resp., abstract) variable x. The following
proposition follows straightforwardly from the definition, and the classical results by
Herbrand.

Proposition 2. Given a concrete domain scheme S, let P be a positive logic program
and Φ be the corresponding Horn F-Logic theory, then

– P has a stable model iff Φ is satisfiable, and
– if P has a stable model M , it is unique, and for every ground atom or molecule α,
α ∈ M iff Φ |=f α.

2 Note that the rule (4) is not safe. However, (∗ ∗ ∗) is not necessary in case subclass statements
( :: ) do not occur in rule bodies and are not considered when determining consequences.
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5 First-Order Autoepistemic Logic with Frames and Concrete
Domains

First-Order Autoepistemic Logic (FO-AEL) [14,3] is an extension of first-order logic
with a modal belief operator L, which is interpreted nonmonotonically. We specify an
extension of FO-AEL, based on F-Logic with concrete domains, called FF-AEL.

An FF-AEL language LL is defined relative to a language L:

– any atomic formula or molecule in L is a formula in LL,
– if φ is a formula in LL, then Lφ, called a modal atom, is a formula in LL, and
– complex formulas are constructed as in F-Logic with concrete domains.

A formula without modal atoms is an objective formula.
An autoepistemic interpretation is a pair 〈I, Γ 〉, where I = 〈U, UD, ≺U , ∈U , IF ,

IP , I→→〉 is an interpretation, and Γ ⊆ LL is a set of sentences, called the belief set.
Satisfaction of objective atomic formulas in 〈I, Γ 〉 corresponds to satisfaction in I.

Satisfaction of a formula Lφ (φ ∈ LL) in an interpretation 〈I, Γ 〉 with respect to
a variable assignment B under the any-name semantics3, denoted (I, B) |=Γ Lφ, is
defined as follows:

(I, B) |=Γ Lφ iff, for some variable substitution(s) β, associated with B, φβ
has no free variables and φβ ∈ Γ .

This extends to arbitrary formulas in the usual way (see also Section 3).
〈I, Γ 〉 is a model of φ, denoted I |=Γ φ, if (I, B) |=Γ φ for every variable assignment

B. This extends to sets of formulas in the usual way. A set of formulas A ⊆ LL entails
a sentence φ with respect to a belief set Γ , denoted A |=Γ φ, if for every interpretation
I such that I |=Γ A, I |=Γ φ.

A central notion in FF-AEL is the stable expansion, which is the set of beliefs of
an ideally introspective agent, given some base set. A belief set T ⊆ LL is a stable
expansion of a base set A ⊆ LL iff T = {φ | A |=T φ}.

A formula φ is an autoepistemic consequence of A if φ is included in every stable
expansion of A. In the remainder, when referring to consequences of a theory A we
mean objective autoepistemic consequences, unless specified otherwise. The following
proposition is a straightforward generalization of a result in [14].

Proposition 3. Given a concrete domain scheme S, let Φ ⊆ L be a satisfiable F-Logic
theory. Then, Φ has one consistent stable expansion T , and T ∩ L = {φ | Φ |=f φ}.

Embedding Logic Programs. Following [3], we define an embedding as a function
which takes a normal F-Logic program P as its argument and returns a set of FF-AEL
sentences. Since the unique-names assumption does not hold in FF-AEL, it is necessary
to axiomatize default uniqueness of names. With UNAΣ we denote the set of axioms

¬L(t1 = t2) ⊃ t1 �= t2, for all pairs of distinct ground terms t1, t2.

3 [14] presents also the all-names semantics, but we follow [14,3] in their choice for the any-
name semantics.
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Let r be a normal rule of the form (1). Then,

τHP (r) = (∀)
∧

1≤i≤mbi ∧
∧

1≤j≤n¬Lcj ⊃ h,

such that each concrete variable is quantified using ∀c, and all other variables are quan-
tified using ∀a. For a normal F-Logic program P , we define:

τHP (P ) = {τHP (r) | r ∈ P} ∪ UNAΣP .

Recall the three rules (∗), (∗∗) and (∗ ∗ ∗), which are part of every F-Logic program.
These rules translate to FF-AEL as follows: (∗) ∀ax, y, z (x :: y ∧ y :: z ⊃ x :: z), (∗∗)
∀ax, y, z (x :y ∧ y :: z ⊃ x : z) and (∗ ∗ ∗) ∀ax (x ::x). It can be easily verified, us-
ing the definition of interpretations and satisfaction in F-Logic, that the embeddings of
these formulas are all valid in F-Logic and thus in FF-AEL (i.e. they are included in
every stable expansion). Faithfulness of the embedding is established in the following
proposition, which generalizes a result in [3].

Proposition 4. Given a concrete domain scheme S, a Herbrand interpretation M of
a normal F-Logic program P is a stable model of P iff there is a consistent stable
expansion T of τHP (P ) such that M coincides with the set of objective ground atoms
and molecules in T .

6 WSML Logical Expressions

In this section we present an abstract syntax for WSML logical expressions, and define
their semantics through an embedding in FF-AEL. We use this abstract syntax to discuss
two forms of language layering between the WSML variants. Note that this abstract
syntax for WSML formulas differs from the more verbose (logical expression) surface
syntax in the original specification. There is, however, a straightforward mapping from
the syntax we use here to the surface syntax; see [5, Section 4.3].

Given a concrete domain scheme S 4, the signature of a WSML language L is of the
form Σ = 〈F ,P ,FS,PS〉, as in F-Logic with concrete domains (cf. Section 3).

Terms and atoms are defined as in Section 3. Molecules are defined analogously to
F-Logic: if t1, t2, t3 are terms, then t1 : t2, t1 :: t2 and t1[t2 x t3], with x ∈ {ot , it , hv},
are molecules. The symbol ot stands for the WSML construct ofType; a statement
t1[t2 ot t3] requires all values for the attribute t2 to be known to be of a member of
the type t3; it stands for the WSML construct impliesType; a statement t1[t2 it t3] im-
plies that all values for the attribute t2 are a member of the class t3; hv stands for the
WSML construct hasValue; a molecule t1[t2 hv t3] says that the individual t1 has an
attribute t2 with value t3.

WSML formulas are inductively defined as follows, with φ, ψ ∈ L:

– atoms and molecules are formulas;
– ∼ φ, with ∼∈ {¬, not }, is a formula;

4 It is assumed in WSML that such a concrete domain scheme incorporates at least the XML
Schema datatypes string, integer, and decimal [6, Appendix C].
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– φ � ψ, with � ∈ {∧,∨,⊃,≡}, is a formula; and
– Q x(φ), with Q ∈ {∀a, ∃a, ∀c, ∃c} and x ∈ V , is a formula.

Additionally, no variable quantified using an abstract quantifier (∀a, ∃a) may be used in a
concrete atom. We assume that the predicate symbols it, ot are not used in any WSML
formula. As usual, WSML sentences are WSML formulas with no free variables.

The semantics of WSML formulas is defined through a translation to FF-AEL: let
Φ be a set of WSML formulas, then tr(Φ) is the FF-AEL theory obtained as follows:
for each φ ∈ Φ, tr(φ) is obtained from φ by replacing each occurrence of not with ¬L,
replacing hv with →→, and replacing molecules of the forms t1[t2 ot t3] and t1[t2 it t3],
with t1, t2 and t3 terms, with atoms of the forms ot(t1, t2, t3) and it(t1, t2, t3), re-
spectively. Finally, the following formulas are used to axiomatize the intentional (only
if) semantics of the ot and it molecules:

∀a x, y, z, v, w ( ot(x, y, z) ∧ v :x ∧ v[y→→w] ∧ ¬Lw : z ⊃ ⊥); (2)

∀a x, y, z, v, w ( it(x, y, z) ∧ v :x ∧ v[y→→w] ⊃ w :z), (3)

and the following formulas are used to axiomatize the extensional (if and only if) se-
mantics of the it and :: molecules, necessary for DL-like languages:

∀a x, y, z (∀av, w(v :x ∧ v[y→→w] ⊃ w : z)) ⊃ it(x, y, z), and (4)

∀a x, y (∀av(v :x ⊃ v :y)) ⊃ x ::y. (5)

WSML-Full and -FOL Any WSML sentence is a WSML-Full sentence. A WSML-Full
theory is a set of WSML-Full sentences. The semantics of a WSML-Full theory Φ is
given through the embedding trFull(Φ) = tr(Φ) ∪ {(2), (3), (4), (5)}.

A WSML-FOL sentence is a WSML-Full sentence which neither contains ot -
molecules, nor occurrences of the default negation operator not . A WSML-FOL theory
is a set of WSML-FOL sentences. The semantics of a WSML-FOL theory Φ is given
through the embedding trFOL(Φ) = tr(Φ) ∪ {(3), (4), (5)}.

WSML-Rule. WSML-Rule formulas are of the form

(∀)b1 ∧ . . . ∧ bl ∧ not c1 ∧ . . . ∧ not cm ⊃ h (6)

where b1, . . . , bl, c1, . . . , cm are atoms or hv , ot , or isa ( : ) molecules, with l, m non-
negative integers, and h an abstract equality-free atom or molecule; if h = ⊥, then
we call the rule an integrity constraint. Additionally, each quantifier is either abstract
(∀a) or concrete (∀c). A WSML-Rule theory is a set of WSML-Rule sentences. The
semantics of a WSML-Rule theory Φ is given through the embedding trRule(Φ) =
tr(Φ) ∪ {(2), (3)}.

Concrete atoms in WSML-Rule correspond to the common built-in atoms in Logic
Programming.

Notice that there is a natural correspondence between WSML-Rule formulas of the
form (6) and rules in a logic program of the form (1). Thus, WSML-Rule formulas are
essentially rules with a head and a body. Notice that, whereas the embedding trFull(Φ)
includes the sentences (4) and (5), the embedding trRule(Φ) does not, because there is
no natural correspondence to rules due to the universal quantification in the antecedent
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of the formulas (4) and (5). The it - and :: -molecules may not be used in the body of
a rule in order to maintain a strict correspondence between the WSML-Rule semantics
and the WSML-Full semantics, as illustrated in the following example.

Example 2. Consider the theory Φ consisting of the formulas

∀ax(x : A ⊃ x :B) and
A ::B ⊃ q.

The theory trRule(Φ) neither has A ::B nor q among its consequences. In contrast, it is
easy to verify that, by (5), trFull(Φ) has both A ::B and q among its consequences.

WSML-Flight. A WSML-Flight theory is a WSML-Rule theory for which holds that,
for every formula of the form (6), every variable occurs in a positive abstract body atom
bi, no function symbol in (6) is used with an arity higher than 0, and the theory is locally
stratified5.6 The semantics of a WSML-Flight theory Φ is given through the embedding
trFlight(Φ) = trRule(Φ).

WSML-DL. Given an FOL formula φ, δ′(φ) is obtained from φ by replacing atoms
of the forms A(t1), R(t1, t2), with t1, t2 terms, with molecules of the forms t1 :A, t1
[Rhv t2].

Given a SHIQ(D) signature Σ = 〈C, D, Ra, Rc, Fa, Fc〉, the corresponding
WSML signature is 〈C ∪ D ∪ Ra ∪ Rc ∪ Fa, ∅,F ′c,D′〉, where F ′c is the set of
0-ary functions symbols obtained from Fc and D′ is the set of 1-ary predicate sym-
bols obtained from D. A WSML-DL formula is a WSML formula of the form

– δ′(φ), where φ is the FOL equivalent of a SHIQ(D) axiom of the signature Σ,
– a :: b, with a, b ∈ C,
– a[s it b], with s ∈ Ra and a, b ∈ C, or
– a[u itd], with u ∈ Rc, a ∈ C and d ∈ D.

Given a SHIQ(D) signature Σ, a WSML-DL theory is a set of WSML-DL sentences.
The semantics of a WSML-DL theory Φ is given through the embedding trDL(Φ) =
trFOL(Φ).

WSML-Core. A WSML-DL formula which is also a Flight formula is a WSML-Core
formula. WSML-Core theory is a set of WSML-Core sentences. The semantics of a
WSML-Core theory Φ is given through the embedding trCore(Φ) = trFlight(Φ) =
trRule(Φ).

Let S be a concrete domain scheme and x ∈ {Core, F light, Rule, DL, FOL,
Full} a WSML variant. We say that a WSML-x theory Φ is consistent if trx(Φ) has a
consistent stable expansion an WSML-x formula φ, and is a WSML-x consequence of
Φ if φ ∈ T for every stable expansion T of trx(Φ).

5 Each atom or molecule in gr(Φ) is assigned a stratum, which is an integer. We say that gr(Φ)
is stratified if there is an assignment of atoms and molecules to strata such that: if an atom or
molecule p occurs positively in a rule with an atom or molecule q as its head, then p has the
same or a lower stratum, and if p occurs negatively in a rule with q as its head, then p has a
lower stratum than q. If gr(Φ) is stratified, then Φ is locally stratified.

6 These conditions correspond to the usual safety condition which must hold for Datalog pro-
grams, and the usual local stratification for logic programs.
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WSML Language Layering. We now turn to the relationships between the language
variants. Certain relationships are straightforward, because of equivalence of the em-
beddings in FF-AEL (e.g. given a WSML-Core theory Φ, trCore(Φ) = trFlight(Φ) =
trRule(Φ)); however, there are also certain differences between embeddings (e.g. given
a WSML-Core theory Φ, trCore(Φ) �= trDL(Φ) �= trFull(Φ)). We consider two forms
of language layering: strict and loose language layering.

Admissible consequences under strict/loose language layering are subsets of all for-
mulas of a given WSML variant. Intuitively, admissible consequences are the formulas
allowed to be considered when checking consequences of a given a theory.

The admissible consequences under strict language layering for WSML are as fol-
lows: every it - and :: -free WSML-(Core/Flight/Rule) sentence is an admissible con-
sequence of WSML-(Core/Flight/Rule), and every WSML-(DL/FOL/Full) sentence is
an admissible consequence of WSML-(DL/FOL/Full) under strict language layering.
Under loose layering, additionally every WSML-(Core/Flight/Rule) sentence is an ad-
missible consequence of WSML-(Core/Flight/Rule). We denote the set of admissible
consequences under strict (resp., loose) language layering of a given WSML variant L
with L|as (resp., L|al).

Definition 1. Let L1, L2 be two WSML variants with associated embeddings (seman-
tics) tr1, tr2. Then,

– L2 is strictly layered on top of L1, denoted L1 ⇒s L2, if for every theory Φ ⊆ L1
and every formula φ ∈ L1|as, φ is a consequence of tr1(Φ) if and only if φ is a
consequence of tr2(Φ), and

– L2 is loosely layered on top of L1, denoted L1 ⇒l L2, if for every theory Φ ⊆
L1 and every formula φ ∈ L1|al, φ is a consequence of tr2(Φ) whenever φ is a
consequence of tr1(Φ).

It turns out that when considering loose language layering, we can consider gener-
alized WSML-(Core/Flight/Rule) formulas, which are WSML-(Core/Flight/Rule) for-
mulas which additionally allow it - and :: -molecules in the body, i.e. for formulas of
the form (6) holds that bi, ci may be atoms or arbitrary molecules. This notion nat-
urally extends to WSML-(Core/Flight/Rule) theories. We thus obtain the generalized
WSML-(Core/Flight/Rule) language variants.

Theorem 1 (WSML Language Layering)

– WSML-Core ⇒s WSML-Flight ⇒s WSML-Rule ⇒s WSML-Full.
– WSML-Core ⇒s WSML-DL ⇒s WSML-FOL ⇒s WSML-Full.
– Gen. WSML-Core ⇒l gen. WSML-Flight ⇒l gen. WSML-Rule ⇒l WSML-Full.
– Gen. WSML-Core ⇒l WSML-DL ⇒l WSML-FOL ⇒l WSML-Full.

An important distinction between the strict and the loose language layering, is that in
the strict language layering setting certain schema-level formulas (i.e. those involving
it - and :: - molecules) are not among the admissible consequences. Therefore, it is not
possible in WSML-Flight and WSML-Rule to reason about subclass and certain typing
relationships, when adhering to strict layering. We illustrate the differences between the
two forms of layering with an example.
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Example 3. Consider the WSML-Core theory Φ = {Person[hasChild itPerson],
Astronaut ::Person, ∀a x(x : Person ⊃ x :Animal)} which says that, for every
instance of the class Person, each value of the attribute hasChild is an instance of
Person, Astronaut is a subclass of Person, and every instance of Person is also
an instance of Animal. Now consider the formulas φ1 = Astronaut[hasChild it
Person] and φ2 = Person ::Animal; φ1 and φ2 are both consequences of trDL(Φ),
but neither is a consequence of trCore(Φ) (or indeed trFlight(Φ) or trRule(Φ)). One
can verify that, in fact, the set of consequences of trCore(Φ) is a subset of the set of
consequences of trDL(Φ). Observe also that φ1 and φ2 are not admissible WSML-
Core consequences under strict language layering. In fact, the sets of consequences of
trCore(Φ) and trDL(Φ) coincide with respect to admissible WSML-Core consequences
under strict language layering, as was demonstrated with Theorem 1.

Comparing strict and loose language layering, we observe that if strict language layer-
ing is considered, the definitions of WSML-Flight and WSML-Rule formulas are more
restrictive, and there are certain (some may argue, unintuitive) restrictions on the kinds
of consequences which are admissible. In fact, under strict language layering, the Core,
Flight, and Rule variants are significantly less expressive than the corresponding gen-
eralized variants under loose layering, because inferences of it - and :: statements may
not be considered. Therefore, the use of loose language layering seems more attractive.
Indeed, the use of loose language layering is common in Semantic Web standards; for
example, RDFS is loosely layered on top of RDF, OWL Full is loosely layered on top
of RDFS, and OWL Full is loosely layered on top of OWL DL. However, one could
imagine scenarios in which strict language layering is more attractive. For example,
when directly using a WSML-DL reasoner for reasoning with WSML-Core theories,
one needs to be sure that the semantics correspond; otherwise, certain inferences might
be incorrect with respect to the WSML-Core semantics.

7 Correspondence with Target Formalisms

In this section we show the correspondences between the WSML language variants
and the logical language formalisms which have originally motivated the definition of
these variants, with respect to the reasoning tasks relevant in the formalism. The target
formalisms for WSML-Core, WSML-DL, WSML-Flight, WSML-Rule and WSML-
FOL are DHL(D), SHIQ(D), the Well-Founded Semantics for stratified and general
logic programs, and (F-Logic-extended) classical first-order logic, respectively.

WSML-Full and WSML-FOL. The usual reasoning tasks for autoepistemic logic are
existence of stable expansions, inclusion of a formula in some stable expansion, and
inclusion of a formula in all stable expansions (autoepistemic consequence) (cf. [16]).
We expect these reasoning tasks to be relevant for WSML-Full as well.

From the definition we can see that WSML-FOL does not make use of the non-
monotonic modal operator L and thus basically corresponds to F-Logic with concrete
domains. The following theorem follows straightforwardly from Proposition 3.

Theorem 2 (WSML-FOL correspondence). Given a concrete domain scheme S, a
WSML language L, a WSML-FOL theory Φ ∈ L and a formula φ ∈ L, then trFOL(Φ)
|=f tr(φ) iff tr(φ) is a consequence of trFOL(Φ).
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WSML-DL and -Core The usual reasoning tasks for the Description Logic SHIQ(D)
are concept satisfiability, knowledge base satisfiability and logical entailment (usually
restricted to formulas of a specific shape, such as ground atoms and subsumption ax-
ioms). Since these problems can all be reduced to each other [1], we only need to
consider the entailment problem.

Theorem 3 (WSML-DL correspondence). Given a concrete domain scheme S, if Φ
is a WSML-DL theory and φ is a WSML-DL axiom, then there are a corresponding
SHIQ(D) theory Φ′ and SHIQ(D) axiom φ′ (and vice versa) such that Φ′ |= φ′ iff
tr(φ) is a consequence of trDL(Φ).

Proof (Sketch). By definition of WSML-DL we have that for each SHIQ(D) theory
Ψ there is an equivalent WSML-DL theory Φ.

Let Φ be a WSML-DL theory and φ be a WSML-DL axiom, and let φ′ be the (FOL
equivalent of a) SHIQ(D) axiom obtained from φ by replacing each molecule of the
form t :f with an atom of the form f(t), each molecule of the form t1[r hv t2] with
an atom of the form r(t1, t2), each formula of the form t1 :: t2 with a formula of the
form ∀x(t1(x) ⊃ t2(x)), each formula of the form t1[t2 it t3] with a formula of the
form ∀x, y(t1(x) ∧ t2(x, y) ⊃ t3(y)), and let Φ′ be obtained from Φ in the same way,
discarding the formulas (3,4,5). It is easy to verify that Φ′ and φ′ are FOL equiva-
lents of a SHIQ(D) theory and axiom. Using Proposition 1 it is can be verified that
trDL(Φ) |=f tr(φ) iff Φ′ |= φ′ (under standard FOL semantics). The theorem then fol-
lows immediately from Theorem 2. ��
The following Theorem follows straightforwardly from the proof of Theorem 3 and the
definition of WSML-Core.

Theorem 4 (WSML-Core correspondence). Given a concrete domain scheme S, if
Φ is a WSML-Core theory and φ is a :: - and it -free WSML-Core axiom, then there are
a correspondingDHL(D) theory Φ′ and DHL(D) axiom φ′ (and vice versa) such that
Φ′ |= φ′ iff tr(φ) is a consequence of trCore(Φ).

WSML-Rule and -Flight. The usual reasoning task for the Well-Founded Semantics is
ground entailment, i.e. inclusion in the well-founded model. Additionally, as WSML-
Flight and WSML-Rule have integrity constraints, consistency checking is also an im-
portant reasoning task.

Reasoning in the Well-Founded Semantics can be seen as an approximation to rea-
soning in the Stable Model Semantics. In fact, given a logic program P , if a ground
atom α is true in the well-founded model of P , then α is included in every stable model
of P , and thus is entailed under cautious inferencing. In the remainder we consider the
Stable Model Semantics because of its close relation to autoepistemic logic.

In the following theorem we establish a correspondence between the stable expan-
sions of a WSML-Rule theory and the stable models of the corresponding logic pro-
gram. Correspondence with respect to all relevant reasoning tasks follows immediately.
For example, cautious reasoning corresponds to autoepistemic consequence, and consis-
tency checking corresponds to existence of a consistent stable expansion. The theorem
follows straightforwardly from Proposition 4.
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Theorem 5 (WSML-Rule and WSML-Flight correspondence). Given a concrete
domain scheme S, if Φ is a WSML-Rule theory, then there is a corresponding nor-
mal F-Logic Program P (and vice versa) such that a Herbrand interpretation M of P
is a stable model of P iff there is a consistent stable expansion T of trRule(Φ) such that
M coincides with the set of objective ground atoms and molecules in T .

If, additionally, Φ is a WSML-Flight theory, then P has at most one stable model,
and Φ is consistent iff P has exactly one model.

8 Conclusions

In this paper we have presented a novel semantic framework for WSML based on
FF-AEL, which is first-order autoepistemic logic [14,3] extended with Frames [13] and
concrete domains [2]. Using this framework we have defined a semantics for WSML-
Full, and have proposed two paradigms for language layering in WSML. Strict language
layering requires additional restrictions on the syntax of the WSML variants, but gives
more guarantees on the preservation of consequences than loose language layering. The
WSML group is considering adopting loose language layering for future versions of the
language; the main motivation is that it is considered unintuitive to disallow certain in-
ferences (i.e. those involving it - and :: -molecules).

The approach for defining concrete domains in FF-AEL is very general, and might
be applied in the area of Logic Programming, to extend current approaches to built-ins
such as the one in Datalog [19], and might be used to extend the support for concrete
domains in WSML-DL towards customized data types [17].

Two alternative embeddings for logic programs in FO-AEL have been considered
in [3], besides the one we used in this paper (τHP ). The distinguishing feature between
the embedding we have considered in this paper, and these two alternative embeddings,
is that, using the embedding τHP , positive rules are translated to Horn formulas, which
means that there is a very tight integration between the axioms originating from a DL
knowledge base and the rules originating from the logic program, corresponding to our
intuition behind WSML-Full as a unifying integrating language.

An alternative formalism which has been used for combining rules and ontologies
in a unifying semantics is MKNF [15]. This approach is very similar to ours (however,
frames are not considered in MKNF), although the precise relationship between FF-AEL
and MKNF remains to be investigated. The embedding of logic programs used in [15] is
quite different from the embedding τHP which we considered in this paper, but it is very
close in spirit to the embedding τEH , which is one of the alternative embeddings consid-
ered in [3]. Investigating the relationship between FF-AEL and MKNF, as well as other
formalisms which combine Description Logics and Logic Programming (e.g. [7,18,11])
is future work. Since positive rules are interpreted as Horn formulas, we conjecture that
our semantics corresponds to that of SWRL [11], provided only positive programs are
considered, and certain restrictions apply to the allowed concrete domain schemes.
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Abstract. Business rules are statements that express (certain parts of)
a business policy, defining terms and defining or constraining the opera-
tion of an entreprise, in a declarative manner. The business rule approach
is more and more used due to the fact that in such systems, business ex-
perts can maintain the complex behavior of their application in a “zero
development” environment. There exist more and more business rule
management systems (BRMS) and rule engines, adding new needs in
the business rules community. Currently the main requirement in this
domain is having a standard language for representing business rules,
facilitating their integration and share. Works for solving this lack are in
progress at e.g OMG and W3C.

The aim of this paper is to propose a way to automatically generate
a part of the business rules by combining concepts coming from Model
Driven Architecture and Semantic Web using the Ontology Definition
Metamodel.

Keywords: Artificial Intelligence, Business rules, knowledge based sys-
tems, Model Driven Architecture, knowledge representation, reasoning,
ontology, Semantic Web.

1 Introduction

Business rules are statements that express (certain parts of) a business policy,
defining terms and defining or constraining the operations of an entreprise, in a
declarative manner [1,2,3,4]. The business rule approach is more and more used
due to the fact that in such systems, business experts can maintain the complex
behavior of their applications in a “zero development” environment. There exist
more and more business rule management systems (BRMS) and rule engines,
adding new needs in the business rules community. Currently the main need
in this domain is having a standard language for representing business rules,
facilitating their integration and share. Works for solving this lack is in progress
at OMG and W3C [5,6,7,8,9] as well as other initiatives [10,11].

In another side, an enough heavy step during business rules bases systems
implementation is the step of elicitation of rules from the business. Entreprises,
generally, have (legacy) models in a UML or Entity Relationship like model. A

M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 118–132, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Merging Model Driven Architecture and Semantic Web 119

question which results from this is, when using models, is it possible to auto-
matically generate a part of business rules? For doing so by machines, they need
to understand formally (semantics) terms and concepts they are manipulating.

We are working on a system of E-Government web application’s generator
from specifications. The system offers to business experts a way for specifying a
part of the web application’s behavior using business rules in a natural language
editor. When we joined this project the first need was to solve the problem
of none flexibility of the business rule’s approach due to the lack of a standard
recognized formalism. So, our firsts contribution was to create a rule’s formalism
independently of any rules engine (JRules [12], Drools [13], Jess [14], etc.). The
principle was to save rules in our formalism (named ERML) and to generate the
rulesets in the target rule engine at generation’s step. Doing this offers to our
application the possibility of changing rule engine target in a flexible way.

InModelDrivenArchitecture (MDA) [15] every concept is expressedby amodel,
but it does not say anything about semantics [16]. In another side, researches in
Semantic Web, especially the use of ontologies, give many possibilities for adding
semantics to semi-structured data, making automatic reasoning possible.

In this paper, we focus in “how can business rules be automatically gener-
ated from conceptual models semantically enriched? And what is the interest in
doing so?”

This paper will first discuss Model Driven Architecture and semantics. We
will present potential solutions for enriching MDA models with semantics. We
will also discuss the possibilities and the benefits provided by mixing models and
web reasoning. At last we will present an implementation of our previous works
on business rules formalism and also our approach presented in this paper.

2 Model Driven Architecture

The Model-Driven Architecture starts with the well-known and long established
idea of separating the specification of the operation of systems from the de-
tails of the way that these ones use the capabilities of their platform [15].
Figure 3 gives a general view of the MDA approach. We can see that a con-
struction of a new Information System begins with the development of one or
more requirement models called Computation Independent Model (CIM). Then
we may develop models independent from any platform called Platform Inde-
pendent Model (PIM). In theory, the latter models must be partially generated
from the former. Platform independent models must be permanent, i.e. they do
not contain any information about execution platform (is it a J2EE or .NET
etc. application).

For constructing the concrete application, we must have Platform Specific
Models (PSM). These models are obtained by transforming PIM and adding
technical informations relative to platforms. PSM are not permanent models.
All these models are for facilitating code generation. The MDA approach is
widely used and advanced generators do exist.
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Fig. 1. Global view of the Model Driven Architecture approach

2.1 MDA Models and Semantics

MDA principals are very interesting and allow economizing time during applica-
tion life cycle by code and model generation. However, MDA specification does
not tell anything about semantics on models. MDA is only interested by con-
tent and not context. So adding semantics will offer a more interesting way for
automatic generation.

Why should MDA take care about semantics: Making transformations
between CIM and PIM, between PIM and PSM, and between PSM and code are
done by specifying transformation rules. Nowadays these rules are handwritten
and machines cannot generate them because there is no notion of semantics
between the entities that are concerned by transformations.

Business rules are about meanings and act on models. Generating all business
rules is impossible but it would be possible to generate a large part of them. For
example for the model in Figure 2, we should want to generate business rules
like:

1. Every Human must have a father and a mother.
2. IF a Human is the mother of a Human then this Human is a Woman.
3. IF a Human is the father of a Human then this Human is a Man.

For doing this automatically, it is clear that adding semantics in models is
needed.
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Fig. 2. A little human model

Potential solutions for adding semantics to models: In MDA, an instance
of MOF (Meta Object Facilities) [17] is used for representing models but our
works are only concerned by UML models. For adding semantics to UML models
we can use:

1. UML profile: UML can be used for modeling many domains. The problem
with this is that UML models are so generic that it is impossible to know
either it is an object application, a metamodel, a model, a database structure
or anything else just by looking at it [16]. For adding precision, the OMG
has standardized the concept of UML profile [18]. A UML profile is a set
of technics and mechanisms allowing to adapt UML to a particular and
specific domain. UML profile can be used in any UML models and does
not modify the structure of the metamodel. UML profiles are stereotypes or
labels which can be pasted on models. After having pasted labels on models,
we can make inference using then. As we can see, doing this can solve our
problem of semantics lack on models in a low level, but this is not exploitable
by machines because there is no notion of logic and taxonomy and semantics
is not formally defined.

2. Object Constraint Language: In UML it was not possible to define the body
of an operation (or a method) so the OCL [19] was standardized by OMG
for this purpose. OCL allows expressing many kinds of constraints on UML
models. For example, we can express constraints like: “before renting a car
to a person one must be sure that this person is ok”. OCL seems to be a
good solution for our problem but it is not the case. Indeed, the first problem
with OCL is that it does not offer automatic inference for machines and the
second is that it does not support side effect operations. However OCL 2.0
does permit reference to operations that change the state of the system in
a constraint expression, but the semantics of such a reference is that the
operation will have been invoked when the truth of the constraint is tested.
This semantics, which is permitted only in post-conditions, does not satisfy
the requirements of the action clause of production rules, which cannot be
used as postconditions of operations.

3. Action Semantics: Remember that the main constraint with OCL was that
it only supports no side effects operations. To solve this constraint, the OMG
standardized Action Semantics [20]. Now we have a formalism which is able to
express any kind of operations and constraints but it is not enough. Indeed, this
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formalism is too complicated to be used [16], was not created while thinking to
machine comprehension and self-use, and do not have a textual formalism.

As we can see, none of the UML “technics” proposed so far is suitable for our
purpose, which we recall, consists in exploiting semantics by machines.

In another side a new domain of computer science is growing more and more:
Semantic Web. The aim of the Semantic Web is to make the web comprehensible
by both humans and machines [21]. A part of Semantic Web is about ontology
and reasoning. Modeling concepts defined by ontologies can be used to model the
concepts in a domain, the relationships between them, and the properties that
can be used to describe instances of those concepts [22]. In addition, the Web On-
tology Language (OWL)[24] supports the inclusion of certain types of constraint
in ontologies, allowing new information to be deduced when combining instance
data with these description logics [22]. At this point our dilemma was how can we
use MDA models and Semantic Web? Ontology Definition Metamodel (ODM)
was the response to our need.

2.2 The Ontology Definition Metamodel

The MDA and its four-layer architecture provides a solid basis for defining the
metamodels of any modeling language, and thus a language for modeling ontolo-
gies based on the MOF [23]. ODM is a proposal for an OMG’s RFP (Request
For Proposal) [24] resulting from an extensive previous research in the fields
of the MDA and ontologies [25,26,27,28,29,30,31]. The main goal of ODM is to
bridge the gap between traditional software tools for modeling (like UML) and
artificial intelligence technics (Description Logics) for making ontologies. The
principle of ODM is to merge two big domains of research which are Model
Driven Architecture and Semantic Web. ODM is still in standardization process
at the OMG [32] when this paper was being written. Basically the ODM allows

Fig. 3. ODM principle
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making ontologies using UML (by using an UML profile with existing tools like
Rational Rose or Poseidon) and transforming it to OWL/RDF, Topic Map or
Common Logic (Figure 3).

In next sections, we will see how ontology reasoning can be used to solve the
lack of semantics in models.

3 Ontology Reasoning

Ontology is an area of great importance for the semantic web. An ontology
establishes the things that a system can talk about and makes reasoning on [21].
Describing concepts and relationships between them formally, offers to machines
the ability of making some varieties of logic, formally or not. Ontology supplies
the concepts and terms; logic provides ways to make statements that define and
use them, and to reason about collections of statements that use the concepts
and terms. In the semantic web, logic plays many different roles:

1. Firing rules: having a set of facts, take a decision.
2. Making inference on facts: for example if we know that Adam’s wife is Eve,

we can infer that Eve is a woman.
3. Explaining why a particular decision has been reached.
4. Detecting contradictory statements and claims.

OWL exploits results of more than 15 years of Description Logics (DL) research
[33,8]. Indeed, for OWL a semantics was defined such that very large fragments
of the language can be directly expressed using so called Description Logics
[34]. Description Logics is a family of logic based Knowledge Representation
formalisms descendants of semantic networks and [35]. It describes domains in
terms of concepts (classes), roles (properties, relationships) and individuals. In
description logics terminology, a tuple of a T-box and an A-box is referred to as
a knowledge base. An individual is a specific named object. With some restric-
tions, one can state that the logical basis of OWL can be characterized with the
description logics SHIQ(Dn)− [36]. This means, with some restrictions, OWL
documents can be automatically translated to SHIQ(Dn)− T-boxes. The RDF-
Part of OWL documents can be translated to SHIQ(Dn)− A-boxes [37].

The logic SHIQ(Dn)− is interesting for practical applications because highly
optimized inference systems are available (e.g., Racer). In such systems, the
following reasoning can be made with T-box :

1. Concept consistency: Is the set of objects described by a concept empty?
2. Concept subsumption: Is there a subset relationship between the set of ob-

jects described by two concepts?
3. Find all incoherences between the concepts mentioned in a T-box. Inconsis-

tent concepts might be the result of modeling errors.
4. Determine the parents and children of a concept: The parents of a concept

are the most specific concept names mentioned in a T-box which subsume
the concept. The children of a concept are the most general concept names
mentioned in a T-box that the concept subsumes.
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With A-box we can answer the following questions :

1. Check the consistency of an A-box: Are the restrictions given in an A-box
w.r.t. a T-box too strong, i.e. do they contradict each other? Other queries
are only possible w.r.t. consistent A-boxes.

2. Instance testing: Is an individual instance of a concept? The individual is
then called an instance of the query concept.

3. Instance retrieval: Find all individuals from an A-box such that the objects
they stand for can be proven to be members of a set of objects described by
a certain query concept.

4. Computation of the direct types of an individual: Find the most specific
concept names from a T-box of which a given individual is an instance.

5. Computation of the roles which make reference to an individual.

Given the background of Description Logic, these inference services can be used
to solve actual problems with OWL knowledge bases.

4 Adding Semantics to Models for Automatic Business
Rules Generation

MDA technologies and Semantic web are complementary; the former is concerned
about automating the physical management and interchange of metadata, while
the latter is focused on the semantics embodied in the content of the metadata as
well as on automated reasoning over that content [38]. The Semantic Web is the
new-generation Web that tries to represent information such that it can be used
by machines not just for display purposes, but also for automation, integration,
and reuse across applications [39]. Model Driven Development (MDD) is being de-
veloped in parallel with the Semantic Web [40]. Emerging applications in finance,
healthcare, security, communications, business intelligence, and many other ver-
tical markets are content and context sensitive (semantics), and require entreprise
scalability and performance [38]. Merging Semantic Web and MDA technologies
can fill this lack. Merging these two domains will be beneficial to both:

1. MDA is only interested by content and not by context (semantics), semantic
web will resolve this important problem.

2. For semantic web: an interesting thing is that so mature UML tools could be
used for making ontologies rather than using so theoretical languages from
Artificial Intelligence domain. In companies software engineers usually are
doing models with UML, so it will be a good thing for allowing them using
their preferred UML tools for making Ontology. Doing so will facilitate the
use of ontologies.

Merging MDA and Semantic Web technologies allows more automatic processing
like generation of constraints and business rules from models. To illustrate this let
us consider the model in Figure 2 to which we add the OWL ontology in Figure 4.
We must note that we take this example very simple for easy explanation and
rapid comprehension but more complicated rules are generated. In this example
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Fig. 4. A little ontology for a little model

of ontology, we declare that a human must have a mother that must be a human
too. Therefore, with qualified “reasoners” and mechanism we can generate that:
IF a Human is the mother of a Human then that Human is a Woman.

Therefore, we can infer that “IF Christ mother’s name is Marie THEN Marie
is a Woman”.

4.1 Our Approach for Business Rules Automatic Generation

Our principle is to use the advanced researches in Semantic Web, to combine
it with Model Driven Architecture in order to make automatic business rules
generation.

For generating business rules automatically, we will use principally the seman-
tics in OWL format. In OWL reasoning, we can make automatic reasoning both
with structures (TBox) and assertions on individuals and properties (ABox) [41].
In our case for example, if we have:

Predicate : Domain1 �−→Domain2

This declaration means that we have a property Predicate going from the domain
Domain1 to the range Domain2.

So we want to generate that:

IF
Object1 Predicate Object2

THEN
Object1 is of type Domain1
AND
Object2 is of type Domain2

Reasonings are done using both domain and range restrictions, individuals and
also properties’s characteristics (functional, transitivity, symmetric, inverse, etc.)
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Fig. 5. Our approach

The Figure 5 describes our approach: using ODM, our model is generated in
OWL/RDF model and this last one is enriched with semantics. With this seman-
tically rich model two solutions are possible for generating rules: serialize the rich
model in XMI [42] and use e.g JMI [2] for parsing it manually. Another solution
is making inference directly with the OWL model using an OWL reasoner. We
have adopted the last solution because there exist good OWL Reasoners and
this solution uses less intermediary steps.

Recall that on gaol is not to generate all kinds of business rules. Indeed,
this is infeasible. However, the part of them that able to generate will save
time for business experts. Figure 6 summarizes our approach throughout MDA
layers. As we can see the first step will be a generation according to the Com-
putation Independent Model (CIM) in an OMG SBVR [5] like syntax (in strict
natural language), the next step will be to generate executive rules according
to the Platform Independent Model using our rule language [43] and models
based on XMI like standard.At the PIM level either our business rules lan-
guage ERML, the RIF W3C standard, the PRR OMG proposal or RuleML
[6,7,11] may be used. At this step we use our “translators” for generating rules
at the PSM level for a specific rule engine. If in the future, a standard busi-
ness rules language is adopted, we’ll either make a “translator” from our
language towards the new standard or either store directly rules in the new
formalism.
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Fig. 6. Our approach throughout the MDA layers

4.2 Implementation

Our approach is being implemented in a system of E-Government web applica-
tion’s generator from specifications. Figure 7 describes its architecture. A studio
is used for allowing business experts to specify the future web application. Dur-
ing specification, business experts can use an integrated rule editor in natural

Fig. 7. Architecture of our E-Government web application
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Fig. 8. Prototyping our approach
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language for writing business rules. First, we have worked on creating a rule
language independently of any rule engine after having studied the previous
attempts of rule’s standardization. From the beginning we have chosen to im-
plement our own rule language together with translators from this language to
some other ones. Few attempts for standardizing rule languages were proposed
in the past without success. CommonRules [10] and RuleML [11] were the most
promising.

It’s important to note that our goal was not to add a new rule language to the
standardization process but, as we work in an industrial project, it was simpler
to develop our own rule language than using one which may be accepted or not in
this standardization process which is only in its beginning phase [43]. ERML is
also used in another project for automating ergonomic rules guideline inspection
for web sites [44]. The process of standardizing business rules formalism is in
serious progress with OMG and W3C workgroups [5,6,7,8,9].

After this step of getting business rule formalism the next step was to im-
plement our approach on business rules automatic generation. Figure 8 shows
a first prototype of our approach in an eclipse environment. Our model is an
ECore model [45], our semantics is in OWL [46]. For us, the Ontology Definition
Metamodel (ODM) arrives just in time, while we were thinking about how to
use directly our semantics in OWL with MOF models (here ECore). We use an
eclipse implementation of ODM (EODM) [47]. The process is the following: use
EODM for transforming our ECore model to OWL model. This OWL model is
a simple ontology (taxonomy) model. After this, using the UML profile of ODM,
we enrich the OWL model with Abox and Tbox assertions, this is done using
any UML tool (in our case MagicDraw) supporting profiles. The next step was
to use an OWL reasoner like Racer or EODM reasoner for making inferences
according to the domains, ranges and properties for generating business rules.
At this state of the implementation, business rules are generated in a Semantics
of Business Vocabulary and Business Rules (SBVR) [5] like format.

5 Conclusion

A business rules application is intentionally built to accommodate continuous
changes in business rules. The ability to change them effectively, is fundamental
for improving business adaptability. The platform on which the application runs
should support such continuous changes. Offering to knowledgeable business
people (experts) the possibilities to formulate, validate, and manage rules in
a “zero-development” environment brings more value-added to this notion of
“computer sciences in humanity’s service”. Allowing an automatic generation
part of this business rules will be of valuable help. In this paper, we have seen
that, by combining the two domains, Model Driven Architecture and Semantic
Web, a solution is possible.

Right now we can only make generation according to the Computation In-
dependent Model (CIM) in a OMG SBVR like syntax (in natural language).
Due to the fact that the standardization of SBVR is recent, no implementation
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does exist. The best to our knowledge, the only free implementation we know is
SBeaVER [48] which is not at an advanced level and, at this moment, can only
express Business vocabulary and not Business Rules. The next step will be to
generate executive rules according to the Platform Independent Model using our
rule language [43] and models based on XMI like format. The last step will be
to have an editor allowing to edit both models and semantics.

Making simple generic business rules generation possible from models facili-
tates the use of the business rules approach which allows easier systems mainte-
nance. It’s clear that generating all kinds of business rules is an utopia and we
must delimit the degree of generation we want to obtain.

Adding semantics to conceptual models open exciting and interesting domains
of applications like information merge.
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Abstract. Geo-ontologies have a key role to play in the development of
the geospatial-semantic web, with regard to facilitating the search for ge-
ographical information and resources. They normally hold large amounts
of geographic information and undergo a continuous process of revision
and update. Hence, means of ensuring their integrity are crucial and
needed to allow them to serve their purpose. This paper proposes the
use of qualitative spatial reasoning as a tool to support the development
of a geo-ontology management system. A new framework for the rep-
resentation of and reasoning over geo-ontologies is presented using the
web ontology language (OWL) and its associated reasoning tools. Spatial
reasoning and integrity rules are represented using a spatial rule engine
extension to the reasoning tools associated with OWL. The components
of the framework are described and the implementation of the spatial
reasoning engine is presented. This work is a step towards the realisation
of a complete geo-ontology management system for the semantic web.

1 Introduction

Retrieval of geographically-referenced information on the Internet is now a com-
mon activity. A large number of documents stored and retrieved on the web
include references to geographic information, typically by means of place names.
Also, the web is increasingly being seen as a medium for the storage and ex-
change of geographic data sets in the form of maps. The geospatial-semantic
web (GeoWeb) is being developed to address the need for access to current and
accurate geo-information [6]. The potential applications of the GeoWeb are nu-
merous, ranging from specialised application domains for storing and analysing
geo-information to more common applications by casual users for querying and
visualising geo-data, e.g. finding locations of services, descriptions of routes, etc.

At the heart of the GeoWeb are geographic ontologies or geo-ontologies. These
are models of terminology and structure of geographic space as well as records
of entities in this space. An example of such an ontology has been proposed
recently in the SPIRIT project [14] and was shown to play a central role in the
development of a geographical search engine. Building geo-ontologies involves a
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continuous process of update to the originally modeled data to reflect change
over time as well as to allow for ontology expansion by integrating new data
sets, possibly from different sources. One of the main challenges in this process
is finding means of ensuring the integrity of the geo-ontology and maintaining its
consistency upon further evolution. Developing methods for the management of
the spatial integrity of geo-ontologies will contribute towards the development of
reliable geographical search engines and to the success of the GeoWeb in general.

In this paper we propose a new framework for the management of geo-ontologies
for the purpose of geo-information retrieval. In particular, we build upon and
utilise research results in the area of qualitative spatial reasoning (QSR). Com-
position tables for different types of qualitative spatial relations are used to de-
rive general rules that govern the structure of the geographic entities and their
interaction in space. A spatial integrity rule language has been developed, as an
extension to OWL , for the expression of these rules. OWL and the popular se-
mantic web reasoning engine Jena, are used for the representation and reasoning
over the geo-ontology. This paper describes the new framework proposed and the
implementation of the spatial reasoning engine. The presentation is limited only
to the main distinguishing characteristics and extensions realised. The design of
the language, its syntax and semantics are outside the scope of this paper.

Section 2 introduces the need of rules for supporting the representation and
management of geo-ontologies and summarises the requirements of a spatial rule
language for geo-ontologies. An overview of the new proposed framework pro-
posed is given in section 3. Section 4 describes in some detail the implementation
of the spatial rule engine, followed by section 5 which shows some examples to
demonstrate the developed system. Conclusions and a view of ongoing research
work is presented in section 6.

2 Rules for Geo-ontologies

Work is ongoing on the development of geo-ontologies to capture the conceptu-
alisations of geographic domains and to facilitate the reuse and sharing of the
geo-referenced information on the web. Several examples of geo-ontology devel-
opments have recently been proposed [9,5].

The following are some of the particular distinguishing characteristics of geo-
ontologies of interest to this work.

1. Geo-ontologies are normally associated with large instance bases (or A-
boxes). A geo-object can have one or multiple spatial representations to
define its location in space. For example, a city may be associated with a
polygon object made up of hundreds of points representing its boundary, a
simplified bounding box approximating its shape, as well as a point repre-
senting its centre. Large instance bases and multiple spatial representation
lead to large ontology files and associated overheads.

2. Much of the semantics in geo-ontologies are implicit and evident only at the
instance level. For example, different types of spatial relationships exist be-
tween every object and all other objects in space; an object may be inside,
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north-of, near to, larger than another object, etc. Some of those relationships
may be captured on the concept level but most others are implicit, evident
only by visual interpretation and geometric computation. Explicit represen-
tation of such relationships is not practically possible and means for their
automatic extraction are needed.

3. Maintaining the logical as well as spatial integrity of geo-ontologies is crucial
for maintaining their soundness and viability. Spatial integrity is different,
and perhaps more complex, than logical integrity. Logical consistency does
not automatically enforce spatial consistency. For example, a part-of seman-
tic relationship between two geo-objects does not imply directly the correct
relationships between the objects’ spatial representations. The boundary of
the child object might intersect with the parent or the area of the child
might be larger than the parent, etc. If a third object exists that is located
completely outside the parent object, then it is an error to insert a fact that
this object intersects the child.

An understanding of the rules that govern space and spatial relationships is
needed for the specification of spatial integrity rules to maintain the consistency
of geo-ontologies. The problem is also evident when integrated utilisation of
multiple geo-ontologies is considered, where processes such as comparison and
merging assume the consistency of the candidate ontologies.

In [1], we reviewed the potential and limitations of OWL for representing
geo-ontologies, the challenges indicated above can’t be addressed directly using
OWL. Recently, rule languages have been proposed that complement and en-
hance the expressiveness of standard ontology languages. Rule expression over
geo-ontologies is needed for the representation of the following types of rules:

– Spatial reasoning rules for the deduction of implicit geo-semantics.
– Spatial integrity rules for representing different type of spatial integrity con-

straints to maintain the consistency of geo-ontologies.

In the rest of this section, spatial reasoning techniques are reviewed that allow
for the identification and expression of both of the above rule types.

2.1 Qualitative Spatial Reasoning Tools

In this section, we demonstrate examples of the use and adaptation of some
types of spatial reasoning techniques and the derivation of spatial rules, that are
used as a basis for the spatial reasoning engine in the framework described later
in the paper. A possible classification of the types of spatial rules is as follows.

– Rules representing constraints over object properties in space, in particular,
spatial properties of dimension, shape and size. Examples of these types
of rules include the fact that a polygon must have at least three different
points and that a polygon must be closed, etc. These types of constraints
are normally used in spatial databases and GIS.

– Rules for reasoning over spatial relationships between objects in space. For
example, the fact that an object A is located inside another object B and
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that B is inside object C, implies that object A is also inside C. It also
implies that C is larger than A and B. This is an example of qualitative
spatial reasoning (QSR). Here, we utilise the results of the large body of
research in this field, where automated methods have been proposed for the
derivation of spatial composition tables for different types of spatial objects
and relationships. Table 1 shows part of a composition table for topological
relations between two simple regions.

Table 1. Composition table for the set of base topological relations between simple
regions

d(y, z) m(y, z) i(y, z) ct(y, z) o(y, z)

d(x, y) all d ∨ m∨ d ∨ m∨ d d ∨ m∨
i ∨ o i ∨ o i ∨ o

m(x, y) d ∨ m∨ d ∨ m∨ i ∨ o d d ∨ m∨
ct ∨ o i ∨ ct ∨ o o i ∨ o

i(x, y) d d i all d ∨ m∨
i ∨ o

Entries in the composition tables can be encoded into rules that can be used
as deduction rules for the automatic derivation of implicit spatial relationships,
as well as constraints for enforcing the integrity of the spatial data sets. These
constraints are the building blocks of the proposed spatial reasoning engine as
described later in the paper.

When reasoning over networks of spatial objects as with a typical geo-ontology,
QSR becomes a more general constraint satisfaction problem. A path consistency
algorithm was proposed earlier to address this problem [18,15]. The main func-
tion of this algorithm is denoted REVISE which deduces the consistency of region
triples {A,B,C} by performing the following operation.1

ArC = ArC ∩ (ArB ⊗ BrC)

The equation validates whether the known or explicitly specified relation-
ship(s) between A and C, contradicts the relationship(s) that may be derived
between the same two objects, using the composition of their relationships with
other objects in the scene (B in this case). The function was first used in the
temporal domain by Allen [2] in his work on interval calculi. The implementation
of the algorithm relies on the existence of pre-specified spatial composition ta-
bles. If the composition returns an empty set, the scene is inconsistent, otherwise
other regions are selected and the process of spatial composition and intersection
is repeated for the rest of the objects in the scene.
1 where ⊗ represents the composition of spatial relationships.
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2.2 Requirements for a Spatial Rule Language for Geo-ontologies

From the above section a list of requirements can be drawn for the design of
a spatial rule language. Standard characteristics of a general rule language, de-
signed to work with ontology languages, e.g. SWRL [13] or RuleML [22], are
assumed. The following list are desirable additional characteristics for rule lan-
guages in the spatial domain. The specification of the language design and the
language semantics is out of the scope of the current paper.

– Assumes a standard spatial data model (conforming with OGC or ISO spatial
models). Predicates in the language will represent different types of geo-
features, their associated geometric representations as well as different types
of spatial operators and relationships.

– Can represent absolute spatial constraints on geographic features.
– Can represent relative spatial constraints between geographic features, in-

cluding, topological, directional and proximity.
– Allows for external calls to geometric processing functions for the evaluation

of pre-specified types of spatial relationships. As explained in the above sec-
tion, only some spatial relationships can be stored a priori in the fact base.
The application of spatial reasoning rules will occasionally require the eval-
uation of some of the implicit relationships using computational geometry
algorithms supported by spatial database systems or GIS.

– Allows for the expression of rule exceptions. This characteristic is particu-
larly useful for the expression of application specific rules, where in some
cases exceptions to general spacial rules are required. See section 4.4 for an
example.

The language should also have a formal logical underpinning, clear seman-
tics and be serializable into a RuleML representation in order to interface with
existing semantic web technologies.

3 Geo-ontology Management System Framework

The main objectives for the geo-ontology management system proposed here are
to support the representation and storage of geo-ontologies and to allow for the
expression and realisation of spatial integrity maintenance and deduction rules
over the geo-ontologies.

Hence, the new framework proposed consists of three main component sub-
systems that together demonstrates an architecture for a system that allows for
the spatial integrity maintenance management of geo-ontologies. These systems
are: 1. the geo-ontology system and associated geo-location storage system, 2.
the spatial rules management and the spatial inference engine, and 3. the error
management system. The framework is shown in Figure 1. The system has been
implemented using OWL , the Jena toolkit and Oracle Spatial.
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Fig. 1. A new framework for representing and maintaining geo-ontologies

3.1 The Geo-ontology Management System

Given the limitations of current web ontology languages for representing ge-
ographic features and their geometry, a dual model of representation will be
used. The geographic concepts and features in the geo-ontology will be repre-
sented using OWL, while the spatial representations of the geo-features will be
modeled using an external geometric processing or spatial database system. Such
a dichotomy of representation does not affect the validity of the overall frame-
work and is proposed as a practical solution to overcome the limitations of the
current semantic web tools. The same spatial integrity maintenance framework
will operate on geo-ontologies completely represented in OWL.

Geo-Ontology Subsystem. The geo-ontology’s spatial data model conforms
to the OGC abstract feature specification . The model also assumes a predefined
set of qualitative spatial relationship properties including topological, directional
as well as relative proximity and size relationships.

The Geo-location Management Subsystem. The types of geometric com-
putation operations, such as distance or area, required to operate over locational
information are not supported using OWL’s schema or functions. Hence, the
representation and management of the absolute locational information are dele-
gated to an external geometric processor or a spatial database system, referred
to as the Location Storage System (LSS) in Figure 1. Such systems have efficient
spatial indexing techniques and optimised geometric processing capabilities.

A unique reference between features in the ontology and their corresponding
locational information represented in the LSS is maintained. As URIs provide,
what we will assume to be, a unique name to the features of the ontology, they
will be mapped directly into the LSS as primary keys. Note that a single interface
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is used in the framework to both the OWL geo-ontology and the LSS that together
form the complete geo-ontology used by the rest of the framework components.

3.2 The Error Management System

Errors mined from the geo-ontology by integrity rules are stored in a separate
error ontology. Building an error ontology is interesting as it provides opportu-
nities for reasoning over errors and would, for example, give insight to the types
of integrity problems, their frequency and guide the error management process.

3.3 The Spatial Reasoning System

The spatial reasoning system (SRS) is at the heart of the framework. The system
provides the functionality to represent spatial rules in their native format. the
SRS is implemented in Java and sits alongside the Jena toolkit. Jena is an
open source Java-based semantic web toolkit. Jena provides an API to access,
manipulate and reason with RDF and OWL ontologies. Jena’s rule reasoning
engine uses a Rete-based forward production rule engine [24] , along with an
XSB [23] based backward chaining logic programming engine.

Jena’s reasoning subsystem is limited when it comes to the authoring of rule
sets. The SRS implements a complete rule authoring system to construct, store,
modify and visualise a spatial rule set. As the spatial rule set is syntactically
and semantically different from a Jena rule set, SRS translates spatial rule sets
into a format compliant with Jena for the purpose of execution. It also defines
extensions to the rule engine in Jena to realise the full expressive extent of spatial
reasoning rules. A more detailed overview of this system is presented below.

4 The Spatial Reasoning Engine

As mentioned, our proposed spatial rule language and reasoning engine have
been implemented using the Jena toolkit. In what follows we describe the specific
extensions to the toolkit needed to address the requirements of the rule language
identified earlier. A more exhaustive treatment of the extensions described and
their logical underpinnings are the subject of another report.

4.1 Interleaved Execution Extension

Typically, all rule body antecedents are matched from existing stored facts (that
being facts derived by rules or explicitly represented). By interleaving forward
and backward reasoning modes, facts can be derived, or proven, on the fly by a
set of one or more backward rules. This is useful is minimising storage overheads.
Consider for example the following rule:

[Region(?x)∧Region(?y)∧Region(?c)∧Inside(?x?c) ∧ Inside(?c?y)→Inside(?x?y)]

The conclusion of Inside(?x ?c) would only be inferred if both the atoms
Inside(?x ?c) and Inside(?c ?y) can be satisfied. These atoms are either
satisfied by facts directly stored in the ontology (explicit), or inferred using
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QSR rules (implicit),2 or as a last resort satisfied by a rule that calls an external
geo-computation engine.

For example, the following is a subset of QSR rules used to derive the in-
side relationship between two regions. The fifth rule is a call to external geo-
computation (exInside predicate).

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ Inside(?x ?c) ∧ Equal(?c ?y)

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ Inside(?x ?c) ∧ Inside(?c ?y)

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ Inside(?x ?c) ∧ CoveredBy(?c ?y)

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ CoveredBy(?x ?c) ∧ Inside(?c ?y)

Inside(?x ?y) ← Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ exInside(?c ?y)

Besides using builtins to evaluate spatial relationships, the engine supports a
standardised set of predefined spatial builtins, such as for example, simple arith-
metic and comparison operators that are evaluated using the external geometric
processor. The restriction that variables must be bound applies to any external
call, i.e. all variable must be bound and the call surmounts to a test of truth
(returning either True or False). Interleaved logic programs have been imple-
mented to varying degrees in Algernon, the M.4 system, MIKE, ECLIPSE and
Harlequin.

Interleaved Implementation. Jena, more specifically Rete, does not inher-
ently provide a means to call a backward rule during the course of antecedent
pattern matching. To support this feature a backward call is added as a builtin
(such a predicate is henceforth denoted a reserved spatial relation predicate).
That is, the reserved spatial relationship predicates are not represented as triple
patterns, but are added to the engine as builtins. The builtins are coded in Java
and are registered with Jena’s forward engine.

Once the builtin is called, the backward rule engine is initialised over the
current set of intentional and extensional triples. For efficiency of retrieval us-
ing the external geometric processor, calls to backward rules must only contain
ground variables. Thus backward rules only evaluate one relationship between
two features at a time, and as such will either return true or false. For example,
consider the following forward rule.

Region(?x) ∧ Region(?y) ∧ Region(?c) ∧ Inside(?x ?c) → · · ·

Inside(?A ?B) represents a query to the backward QSR rule set. The nature of
builtins in Jena, and the two class predicates, ensures that the variables ?A and
?B will be bound before the backward query is executed. Hence, Inside(?A ?B)
will return either true or false, based on whether that relationship exists in the
ontology, can be inferred, or whether it can be determined from the geometry.

Jena’s Backward Engine: The reserved spatial relation predicates are executed
in Jena’s integrated XSB backward engine. XSB is based on a modified version
of SLD resolution, namely SLG resolution. The following features of XSB are of
particular interest to this work.

2 Spatial reasoning rules are defined using composition tables as described earlier.
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1. SLG tabling allows the transitive closure of a property to be computed with-
out entering an infinite loop - as would be the case with SLD resolution. This
is very useful for example when computing the containment hierarchy of
geofeatures.

2. SLG’s left to right top to bottom procedural reading (first in first out, also
a feature of SLD resolution). The efficiency of the system is heavily affected
by this. Rules with shallow inference chains can be evaluated before rules
with deeper inference chains, lastly followed by rules with external calls to
spatial relationship computation.

The order with which rules in the backward rule set are executed is explicitly
defined by the rule execution metadata tag. In Jena, the order of rule evaluation
is determined by the order in which the rules are encoded in the rule string sent
to the backward reasoning engine. Therefore during conversion from the rule
system to Jena, the rule string is constructed in the order that is represented by
the backward meta tags.

4.2 Integrity Rules

The bodies of integrity and deduction rules are identical in both specification
and functionality. An integrity rule differs from a deduction rule in the use of its
head atom. That is, an integrity rule does not assert new information into the
ontology,3 instead it asserts errors into an error ontology (thus permitting the
storage of errors). Positive and negative errors can be concluded, as explained
below.

Default Integrity Rules. As indicated in the requirements earlier, it is desir-
able for the rule language to represent default integrity rules and their exceptions.
This is a form of default reasoning [21,17,20]. That is, a default rule is assumed
true until its contrary can be proved. For example:

body → error(X)
body2 → ¬error(X)

where X is a variable. The error of the first rule is assumed until there is enough
evidence to support body2, and the error (where both errors have the same
variable substitution for X) is refuted.

A large body of research in the area of prioritised default reasoning has
studied this problem. Courteous logic [10] is a popular type of prioritised
default reasoning which is expressive enough to capture our integrity require-
ments. Courteous logic provides us with a natural and intuitive way to pro-
vide rule priority to capture the requirement of rule defaults and rule
exceptions.

3 As is common in logic programming literature, a rule without head is referred to as
an integrity rule.
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Example: The following is an example of a spatial integrity constraint with both
a default rule and an exception to that rule.

Road(?x) ∧ River(?y) ∧ Crosses(?x?y) →
error(roadRiverCrossError ?xCrosses ?y doNotCross riverRCross) (1)

Road(A40) ∧ River(Taff) ∧ Crosses(A40 Taff) →
notError(roadRiverCrossError A40 Crosses Taff

roadsRiversDoCross riverRCrossException) (2)

Rule (1) is the default rule and (2) its exception. Intuitively, The ground instan-
tiation of the first rule which substitutes variables ?x and ?y for A40 and Taff
respectively is overridden by the second rule.

An often used first step to the implementation of Courteous Logic in cur-
rent reasoning engines is through the use of a courteous compiler. A courte-
ous compiler compiles away the expressive Courteous logic extensions, leaving a
semantically equivalent ordinary logic program [11], which can then be imple-
mented in common logic program reasoning engines such as PROLOG. Here,
we adapt such an implementation by placing some expressive restrictions on the
courteous logic component, thus removing the need for a courteous compiler. In-
stead, we employ a simple algorithm denoted, the Prioritized Conflict Handling
Engine (PCHEng), to perform a post processing cleanup. The following are
the expressive restrictions to the full Generalised Courteous Logic as described
in [12].

1. As with a basic courteous logic program we permit only the classical mutex.
2. Classical negation is restricted to integrity rule head atoms only, i.e. to infer

error and its negation ¬error. Negation as failure is completely removed.

We have, however, in part extended the Courteous Logic specification. That is,
we have supplemented the rule label with additional types of rule meta data or
tags, which can be used to infer priorities amongst integrity rules.

With the above restrictions, a rule is definite. That is, it does not contain
negation as failure and the limited form of classical negation can be dealt with
by the PCHEng post processing transform. Our simplified version of Courte-
ous Logic will be henceforth denoted CLP−. The advantages of using the CLP−

approach are two fold. Firstly, we need not deal with the rather complex seman-
tics of a logic program that contains negation as failure (stable models [8] etc).
Secondly, it allows the dynamic generation of rule priorities based on reasoning
over rule meta tags and inferring Overrides predicates.

There are a number of implementations of default or defeasible reasoning,
namely DR-Prolog [3], DR-Device [4], DELORES -a Defeasible Logic Reason-
ing System [16]. Both DR-Prolog and DR-Device handle non-monotonic rules
over RDFS ontologies. DR-Prolog is implemented by transforming information
into PROLOG, and DR-Device works by transforming information into JESS.
All lack procedural attachment. Defeasible reasoning with procedural attach-
ments is supported by the SweetRules project [19]. SweetRules supports Situated
Courteous Logic, that is, Courteous Logic with cleanly formalised procedural
attachments.
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CLP − Implementation. The implementation of CLP− can be divided into
two stages:

Stage 1: Jena’s implementation of Rete [7] for forward inferencing does not
support strong negation (¬, more akin to classical negation) - indeed Rete in
general lacks support for classical negation. Therefore the first step involves
the removal of all appearances of classical negation. This is an easy step and
is a common way of adding a limited form of classical negation in ordinary or
definite logic programs [11]. The step involves: for each error predicate error,
each appearance of ¬error is replaced by an appearance of a new predicate
notError; and a new explicit mutex between error and notError is introduced
- or assumed (as we only deal with the classical mutex).

Stage 2: At the end of the inferencing stage, when Rete’s match-resolve-act cycle
has halted, a potentially inconsistent error base may result. That is, for all pred-
icates in the error base, some may be negatively and positively represented. The
error base is then fed into the Prioritised Conflict Handling Engine (PCHEng)
along with the Overrides sub program, see figure 2. Stage 2 is performed by the
following algorithm.

Fig. 2. PCHEng Information Flow

Algorithm: In overview, the PCH engine removes two conflicting error predi-
cates by checking for a relevant Overrides predicate with which to resolve the
conflict. As is the norm with a CLP, if an Overrides can’t be found, then both
positive and negative versions of the error are removed - treated skeptically.

4.3 Metadata

Rule metadata serves two purposes in our system. The first is as a form of
reflection to derive overrides facts used by the CLP− component. Secondly, to
facilitate the visualisation and authoring of large spatial rule sets. Syntactically
rule meta data is represented during the rules preamble. For example:

[<meta-data> : BODY -> HEAD]

The syntactical representation of rules separates the appearance of the rules
meta data from the rules logic. However, in order to reason over rule meta
data during the reasoning process, the tags must be translated to syntactically
reserved, variable free predicates.
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Algorithm 1. PCHEng
Let S = array of all error individuals in the error ontology
Let P = array of 2-tuple records representing conflicting errors (error, error) - conflict
set
Let Ov = array of all overrides predicates
for (i =0; i < sizeof(S);i++) do

for (int j=0; j < sizeof(S);j++) do
if (i �= j) then

if (s[i] complementof s[j]) then
add s[i] and s[j] to P

end if
end if

end for
end for
for (int i=0; i < sizeof(P); i++) do

Let found = FALSE
for (int j =0; j < sizeOf(Ov); j++) do

if (Ov[j] represents priority over P[i]) then
Remove defeated error triple
Set found = true

end if
end for
if (found == false) then

remove both error triples
end if

end for

Our rule language supports the following spatial meta tags.
forward_meta_data = "<" rule_Name "> "<" rule_Level "> "<" rule_Type ">

"<" rule_Class "> "<" spatial_Rule_Group ">
backward_meta_data = forward_meta_data "<" backward_Rule_Group ">

"<" backward_Rule_Order ">

Overrides predicate inference example: Meta level reasoning can be used to infer
a general prioritisation between level 0 and level 1 rules, for example:

[ruleLevel(?A 0) AND ruleLevel(?B 1) → overrides(?A ?B)]

As a result, all rules that have a rule level of 0 will override rules having a level
of 1 - providing they have conflicting error predicates.

4.4 Example of Default Reasoning

In this example consider the domain specific knowledge that roads and rivers do
not cross in the general case. There are, however, exceptions to this rule. A road
may pass through a river where the river is shallow enough (a forge). Without
modeling forges directly, integrity rules can be used to capture this situation
using a form of default reasoning.
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Consider for example, that roads A40, A50 and the rivers Taff and Tywn are
instantiated into a geo-ontology, and that the spatial relationships {A40 crosses
Taff} and {A50 crosses Tywn } are also added. The following rule is then added
to the rule base as a default.

[< label > riverRoadCross < /label >< ruleLevel > 0 < /ruleLevel >< ruleGroup >
Topo − Semantic < /ruleGroup >< ruleType > 0 < /ruleType >< ruleClass > 1 <
/ruleClass >: Road(?x) AND River(?y) AND Cross(?x ?y) → error(roadRiverCrossError ?x
Crosses ?y roads rivers do not cross riverRoadCross)]

With only the default rule in the rule base, both the A40 and A50 are added
to the error base as shown in figure 3. I.e. roads should not cross rivers.

Fig. 3. Error Base Without Exception Rule(s)

A further rule is asserted into the knowledge base that contradicts the default
rule by specifying the negation of the error that occurs when the individuals
assigned to the variables ?x and ?y are A40 and Taff respectively.

[< label > riverRoadCrossException < /label >< ruleLevel > 1 < /ruleLevel ><
ruleGroup > Topo − Semantic < /ruleGroup >< ruleType > 0 < /ruleType ><
ruleClass > 0 < /ruleClass >: Road(A40) AND River(Taff) AND Cross(A40 Taff)
→ notError(roadRiverCrossError http://phils.sorl.ont/A40 Crosses http://phils.sorl.ont/Taff
roads rivers do cross riverRoadCrossException)]

A rule is used to represent the fact that all level 1 rules override all level 0
rules. As a result, because the exception being at a lower level than the default,
the error for that instance is eliminated.

[< label > overrides < /label >:ruleLevel(?x 0) AND ruleLevel(?y 1) → overrides(?x ?y)]

Fig. 4. Error Base After Exception Rule(s) Added
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With both the rule exception and the overrides rule now added to the rule sys-
tem, only the error between the A50 and Twyn is detected as shown in figure 4.

5 Conclusions

A new framework for the representation and management of geo-ontologies is
proposed. Rules for geo-ontologies were shown to serve two primary purposes,
namely, deduction of implicit spatial semantics and expressions of spatial in-
tegrity constraints. Requirements for a spatial rule language for geo-ontologies
are identified and are used as a base for the design and development of a spa-
tial reasoning engine. Particular extensions to support the desired requirements
to the Jena toolkit are described and some examples are given to demonstrate
the developed system. The system developed implements a new spatial rule lan-
guage for geo-ontologies and has been tested and evaluated using synthetic and
realistic geo-ontologies, partly within the scope of the EU SPIRIT project. The
design of the language and details of the evaluation experiments are out of the
scope of this paper.
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Abstract. Building domain ontology is time consuming and tedious
since it is usually done by domain experts and knowledge engineers
manually. This paper proposes a two-stage clustering approach for semi-
automatically building ontologies from the Chinese-document corpus ba-
sed on SOM neural network and agglomerative hierarchical clustering
and automatically checking the ontology consistency. Chinese lexical
analysis and XML Path Language(XPath) are used in the process of
extracting resources from Web documents. In our experiment, this two-
stage clustering approach is used for building an automobile ontology.
Experimental results and the comparison with the more conventional
ontology-generation method are presented and discussed, indicating the
high performance of our approach. A Racer-based consistency-checking
method of reasoning is presented in this paper. An ontology evolution
method and performance evaluation are also given.

Keywords: Ontology learning, consistency checking, ontology reason-
ing, hierarchical clustering.

1 Introduction

How to build ontologies becomes one of the hottest problems for researchers
in information community nowadays. Ontologies are usually built by knowledge
engineers and domain experts manually. This is unsuitable for building large on-
tologies and sometimes inconsistencies are generated inevitably. With the emer-
gence of the Semantic Web, designing automatic or semi-automatic approaches
for constructing and maintaining domain ontologies becomes more and more
important. However, there is no “correct” way or methodology for developing
ontologies [1].

Some work has contributed to the ontology learning from tabular structures
with the help of relational database [2]. However, besides structured content,
there is a great deal of free content which contains ontologies. Moreover, to the
best of our knowledge, much less work has further researched ontology learning
from Chinese Web documents. As the author’s known, no solutions exist, which

M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 148–162, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Domain Ontology Learning and Consistency Checking 149

learn ontologies from both structured content and free content. Learning ontolo-
gies from Chinese Web documents has not been further researched and it still
face many difficulties nowadays.

In this paper, we propose a novel Two-Stage Clustering(TSC) approach for
building ontologies based on Self-Organizing Maps (SOM) and agglomerative hi-
erarchical clustering from Chinese Web Documents. The remainder of this paper
is organized as follows. Section 2 describes the general framework for building
domain ontologies by using our two-stage clustering approach. Meanwhile, basic
concepts of SOM neural network and Hierarchical clustering are given respec-
tively. Section 3 describes the mechanism of the two-stage clustering approach
and gives a method of checking the ontology consistency. This section also gives
the performance evaluation for our approach. Section 4 describes our method for
ontology evolution. Section 5 gives an example of validating our approach in the
automobile domain by building an automobile ontology. The performance com-
paring between TSC approach and the conventional ontology-generation method
is also given in our experiment. Section 6 briefly describes the related work.
Section 7 describes the conclusions and our future research directions.

2 Building Domain Ontologies Based on TSC

In this section, we present a general two-stage clustering framework based on
SOM neural network and agglomerative hierarchical clustering to build domain
ontologies. Figure 1 describes this TSC framework. Firstly, Web documents in
some domain from which we want to extract ontologies are retrieved. Secondly,
they are send to SOM neural network [3] and classified into several sorts. Then,
for each sort, objects and properties in paragraphs are identified by lexical analy-
sis and those in the structured content are extracted by using Extensible Markup

Fig. 1. TSC framework
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Language Transformation(XSLT) [4]. Date matrices are built based on the as-
sociated properties of individuals and the Euclidean distances between each two
individuals are also calculated. By using the above two-stage clustering, ontolo-
gies are described by trees which can reflect the relationships of classes and their
subclasses(the subclass can represent concepts that are more specific than the
superclass). Finally, ontologies are checked by a reasoner and modified manually
if there are some inconsistencies.

2.1 Model Domain Documents

In order to build domain ontologies, we collect documents about this domain
from Web first of all. Thereafter, these documents should be transformed into the
formation suitable for SOM neural network. Boolean Model, Naive Bayes Model
[6] and Vector Space Model(VSM) [7] are all widely used models for doing this
transformation at present. Boolean Model is simple in structure but strict in its
expression. VSM takes the appearance frequencies of words in documents as the
elements of feature vectors. We use VSM to model the Web documents. In VSM,
every document is denoted by a feature vector (tfW1 , tfW2 , · · ·, tfWN ). Here, N
denotes the number of words which appear in a document(stop words have been
removed after word segment). tfWi denotes the frequency of the ith word. After
modeling, we get a set of feature vectors which indicates the documents to be
trained.

2.2 Train SOM Neural Network – The First-Stage Clustering

SOM neural network is more suitable for implementing the process of learning
instances compared with other Artificial Neural Networks (ANN). It is proposed
by Kononen in University of Helsinki in 1981. SOM is a kind of competitive
neural network without supervision [3]. It is formed by two layers: the input
layer and the output layer (also named as the competitive layer). The nodes in
the input layer are fully connected with the neurons in the output layer and each
connection has a weight vector. By training, SOM can map the high dimensional
input data vector onto a usually two dimensional display while preserving the
topological relationships between the input data items as faithfully as possible
and thus utilize the clustering.

We use the modeled documents in subsection 2.1 to train SOM neural network.
The number of documents and the number of neurons in the output layer are de-
noted by K and M respectively. The connection value is denoted by Wi. Moreover,
we get the winning area by drawing a square area with the Best Matching Unit
(BMU) in the center. We can use following five steps to train SOM:

Step 1: Initialize the weight vectors of the neurons in the output layer. There
are several ways to do this initialization. Here, we use the method of generating
values between 0 and 1 randomly and give them to the initial weight vector
Wi(i = 1, 2, ..., M).

Step 2: Calculate the distance between the input documents and the neurons
in the output layer. We use Euclidean distance here and its formula is as follows:
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dki(t) =

√
√
√
√

N∑

j=1

(Ckj − Wij(t))2 (i = 1, 2, ..., M ; k = 1, 2, ..., K) (1)

dki(t) denotes the Euclidean distance between the feature vector of the kth input
document and the connection value of the ith neutron at the time t; Ckj denotes
the value at the jth bit in the kth document’s feature vector; Wij(t) denotes the
value at the ith bit in the ith neuron’s weight vector at time t.

Step 3: Find the BMU and adjust the weight vectors of neurons in the neighbors
of BMU. We select the neuron with the shortest distance as the BMU (also
named as winner). We can randomly select a BMU from the neurons when their
distances are shortest and have the same value.

d∗ki(t) = min(d(t)
ki ) (i = 1, 2, ..., M ; k = 1, 2, ..., K) (2)

The d∗ki(t) denotes Euclidean distance between the BMU and the input docu-
ment. The neighbors of BMU can be determined by using several methods. Here
we determine it by drawing a square area with the BMU in the center. Then we
adjust the weight vectors of neurons in neighboring area(each border will include
7 neurons) according to the following equation.

Wij(t + 1) = Wi(t) + η(t)(Ckj − Wij(t))
(i = 1, 2, ..., M ; j = 1, 2, ..., N ; k = 1, 2, ..., K)

(3)

η(t) denotes the learning rate at time t, which decreases as t increases, and
0 < η(t) < 1.

Step 4: Update the learning rate η(t) and re-scale the boundary of the winning
area.

η(t) = η(0)(1 − t

T
) (4)

η(0) denotes the learning rate at the beginning. T denotes the number of times
for learning. Suppose that the coordinates of the winner are (xwin, ywin). R(t−1)
denotes the radius of the winning area at the time t − 1:

R(t) = R(t − 1)ρ (0 < ρ < 1) (5)

Then the winning area is the square with the (xwin − R(t), ywin − R(t)) on the
top left corner, and (xwin + R(t), ywin + R(t)) on the bottom right corner at the
time t.

Step 5: Decide whether the training terminates or not. When all the train-
ing documents have been input and the algorithm satisfies max(|Wij(t + 1) −
Wij(t)|) < ε, or it has finished the pre-appointed training times, the algorithm
ends. Otherwise it goes to step 2.

By virtue of visualization method (U-matrix method or distance mapping
method) we can get the clustering result. The method for visualization has been
studied in our previous work [5] and will not described here for brevity. Then for
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each sort we calculate the summations of the frequencies of every word which
appears in documents belonging to this sort. We arrange these words according
to their frequencies in descending order and get a new feature vector of the sort.

As we know, some documents contain structured content (like tables). However,
we cluster documents just according to the paragraphs outside the structured
content here and leave the structured content to the second clustering stage.

2.3 Arrange Classes in Taxonomic Hierarchy – The Second-Stage
Clustering

An ontology is a specification of a conceptualization, used to help programs and
humans share knowledge [21]. According to this definition, we can use the tree
structure to express an ontology. In this tree, the nodes denote concepts. Every
concept has its properties. The edges denote IS-A relations, which are the rela-
tions between classes and subclasses. Each concept has a set of its individual. So
every individual can be denoted by {〈property1, value〉, 〈property2, value〉, ..., 〈p
ropertyn, value〉}. Clustering is a kind of data mining technique and its objec-
tive is to classify a set of objects without supervision. That means there is no
preappointed class before the classification. Since hierarchical clustering [8] is
an early developed and widely used clustering method, in this paper, we use
agglomerative hierarchical clustering and extract information from paragraphs
and structured content in different ways in this subsection.
Extract Information From Paragraphs. Usually, the dimension of the fea-
ture vectors generated in subsection 2.2 is so large that it contains several words
which do not actually reflect the document’s sort. Therefore, for the paragraphs
case, we employ a pruning strategy which can safely eliminate the words whose
appearing frequencies are less than the average frequency of all words. Then
we select the documents whose feature vectors contain not less than 80% of
words in this sort’s bag of words. These documents in themselves constitute
the feature-document corpus which can actually represent the sort. Now we do
lexical analysis by using ICTCLAS [9]. ICTCLAS is developed by Institute of
Computing Technology at the Chinese Academy of Sciences and its frame is
based on Hierarchical Hidden Markov Model(HHMM) [10].

In [1], Noy and McGuinness given ontology-building rules described as follows.

Rule 1. There is no one correct way to model a domain and there are always
viable alternatives. The best solution almost always depends on the application
that you have in mind and the extensions that you anticipate.

Rule 2. Ontology development is necessarily an iterative process.

Rule 3. Concepts in the ontology should be close to objects (physical or logical)
and relationships which are most likely to nouns (objects) or verbs (relationships)
in sentences that describe your domain.

Based on above rules, after lexical analysis, we can identify nouns and verbs
and find the corresponding objects and properties. Then we identify the individ-
uals and associate them with their properties by using the reference-resolution
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technique. Here, each individual has an ID number. Since the values of proper-
ties may be numerals or characters, we generate values according to two cases
respectively. For the numerals case, we take them as the values of properties. As
we all know, property has two kinds: Object property and Datatype property.
The values of them are generated in different ways. For the characters case, if
a property has a literal value and in some matrix there is one individual which
matches this literal, we take the ID number of this individual as the value of
the property instead of the literal. Otherwise, the programme generates a new
individual and we take its ID number as the property’s value. Note that different
individuals have different ID numbers. Finally, we save individuals to XML files.
Extract Information From Structured Content. Besides paragraphs, there
may be some structured content in documents. For this case, we use XPaths to
extract resources. Since much of the HTML content on the Web is ill-formed,
first of all, we pass the HTML documents through a transformer that can repair
the broken syntax and generate well-formed HTML documents (also a kind of
XML documents). Then, we write some XSLT files to do the extraction. Every
XSLT file extracts some kind of information from certain structure. For instance,
table XSLT file can extract all the records and attributes from table structure
and produce a XML file to describe them. Finally, we can simply translate the
XML files containing individuals into data matrices by using another XSLT file.
Cluster Individuals. Now we create classes for ontologies by using agglomera-
tive hierarchical clusteringmethod based on the aforementionedextracted individ-
uals and their properties. Suppose that there are m individuals and each individual

has n properties. We can get a m × n data matrix M =

⎛

⎝

x11 x12 ... x1n
x21 x22 ... x2n

.

.

.

.

.

.
. . .

.

.

.
xm1 xm2 ... xmn

⎞

⎠.

In this matrix, we can recognize each individual as a point in the space with
n dimensions. So this matrix denotes m points in the space.

We use some distance to describe the degree of the individuals’ similarities
when we do the clustering analysis. There are several methods for defining this
distance such as Absolute distance, Euclidean distance, Minkowski distance and
Chebyshev distance. Whichever type the distance belongs to, it should satisfy
following four conditions: a. dij � 0; b. dij = 0 (i = j); c. dij = dji; d.
dij � dik + dki. Here, i = 1, 2, · · ·, m; j = 1, 2, · · ·, m; k = 1, 2, · · ·, m. Since
dij � max{dik, dkj} � dik + dkj , sometimes condition d is reinforced as condi-
tion e: dij � max{dik, dkj}. The distance which satisfies all of a, b, c and e
conditions is named as Extreme distance.

This paper uses Euclidean distance to describe the similarity of every two
individuals. So the clustering algorithm is described as follows:

Step 1: Calculate the distances between every two individuals, marked as dij(i =
1, 2, ..., m and j = 1, 2, ..., m);

Step 2: Create n classes and make sure that every class contains only a single
individual;

Step 3: Incorporate the two classes into one according to some strategy;
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Step 4: Calculate the distances between this new class and other classes respec-
tively. If the number of the classes is equal to one, the algorithm goes to Step 5;
Otherwise, it goes to Step 3;

Step 5: Draw the hierarchical diagram of classes;

Step 6: Determine the number of classes.

In Step 3, “some strategy” means single linkage, complete linkage, aver-
age linkage, centroid method or Ward’s method. Here, we use Ward’s method
proposed by Ward [11]. It was derived from the analysis of the Error Sum-of-
Squares(ESS): If the classification is reasonable, the ESSs of the individuals in
the same sort should be small and the ESSs of different sorts should be large.
Suppose that m individuals are classified into l sorts G1, G2, ..., Gl at present.
The ESS of individuals in sort Gp is defined as follows:

ESSp =
Np∑

α=1

(xpα − xp)′(xpα − xp) (6)

Algorithm 1. Two-Stage Clustering
Input: A document corpus d used for training.
Output: The class hierarchies of all the sorts.

TSC1(Document[ ] d){
TermVector[ ] tv = new TermVector[d.length()];
for(i = 0;i < tv.length();i++)

tv[i] = Spliter.split(d[i]);
SOM som = new SOM();
som.train(Normalizer.normalize(tv));
som.distanceMapping();

}//split() method does word segment and word frequency statistics;
//normalize() method does feature vector generation.

extractResource(Sort[ ] s){
for(int i = 0; i < s.length(); i++){

Extractor.prune(s[i].getDocument());
Extractor.extractInfo(s[i]);
Extractor.saveToXML();

}
}//prune() method does pruning strategy; extractInfo() method does resource ex-
traction.
//Note that paragraphs and structured content have different extractInfo() methods.

TSC2(XMLFile[ ] f){
HierarchicalClusterer[ ] hc = new HierarchicalClusterer[f.length()];
EuclideanDistanceMatrix edm = new EuclideanDistanceMatrix();
for(int i = 0; i < f.length(); i++){

edm.setMatrix(f[i].getXMLFile());
hc[i].linkageByWardMethod(edm);
hc[i].getClassHierarchy();

}//getClassHierarchy() method does the class hierarchy generation.
}
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Here, xpα denotes the αth individual in Gp; Np denotes the number of individuals
in Gp; xp denotes the centroid of Gt. Moreover, the ESS of l sorts is:

ESS =
l∑

p=1

ESSp =
l∑

p=1

Np∑

α=1

(xpα − xp)′(xpα − xp) (7)

When l is fixed, we should choose the incorporation which can minimize ESS.
Suppose that sort Ga and sort Gb are chosen and they are incorporated into a
new sort Gr. We can calculate the distances between this new sort and other
sorts Gt(t �= a, t �= b) by the following equation:

d2
rt =

Nt + Na

Nr + Nt
d2

ta +
Nt + Nb

Nr + Nt
d2

tb − Nt

Nr + Nt
d2

ab (8)

We describe three most important methods in the algorithm for the two-
stage clustering approach in Algorithm 1. Here, TSC1() and TSC2() correspond
to the 1st clustering procedure and the 2nd clustering procedure respectively.
extractResource() corresponds to the information extraction procedure.

3 Performance Evaluation and Consistency Analysis

3.1 Performance Evaluation of TSC Approach

In our ontology-building process, we use the clustering technique twice. Since one
domain may contain several sorts and one sort may contain several classes and
subclasses, we use SOM to cluster the domain documents first of all. Actually,
the ontology is larger with the increasing of the domain. So we should avoid
building complex ontologies which are unnecessary for our use [1]. By using
bags of words, we select a corpus which can represent its sort well. The bags of
words also exclude the documents which represent their sorts weakly. Therefore,
the researched range can be restrained. The later Chinese lexicon analysis can
provide us with the individuals and relationships which are very important for
creating the classes in the ontology base. Thereafter, in the second clustering
stage, we use agglomerative hierarchical clustering to get the class hierarchy for
each sort.

Here we use the cophenetic correlation to evaluate the performance of agglom-
erative hierarchical clustering. It is the linear correlation coefficient between the
original distances used to construct the hierarchy and the cophenetic distances
obtained from the hierarchy. The larger the correlation coefficient is, the more
satisfying the hierarchical clustering is. Suppose that the original distance ma-
trix is Y and the value of linkage(Y ) for generating the hierarchy is Z, the
cophenetic correlation is defined as follows:

c =

∑
i<j(Yij − y)(Zij − z)

√∑
i<j(Yij − y)2

∑
i<j(Zij − z)2

(9)
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Here, Yij is the distance between individual i and individual j; Zij is the cophe-
netic distance between individual i and individual j; y is the average of elements
in matrix Y and z is the average of elements in matrix Z.

We evaluate the performance of our TSC ontology learning approach by using
Recall, Precision, and E-measure.

Recallind =
DOCcor extracted

DOCtotal
, P recisionind =

DOCcor extracted

DOCall extracted
(10)

Here, Recallind denotes the ratio of the documents from which correct individu-
als are extracted(DOCcor extracted) to total documents(DOCtotal) in the corpus.
Precisionind denotes the ratio of the documents from which correct individ-
uals are extracted to all the documents from which individuals are extracted
(DOCall extracted).

Emeasure(Recallind, P recisionind) = 1 − 2
1

Recallind
+ 1

Precisionind

(11)

Emeasure a number with a value range from 0 to 1 and the smaller Emeasure

is, the more accurate the individual extraction is. The ontologies extracted by
TSC approach and those manually extracted by experts from the same domain
corpus is also compared. Assume the ontology build by domain experts is sound
and complete. The Recall and Precision of classes and properties are as follows.

RecallClass =
|SetontCTSC

⋂
SetontCMAN |

|SetontCMAN | (12)

PrecisionClass =
|SetontCTSC

⋂
SetontCMAN |

|SetontCTSC | (13)

RecallProperty =
|SetontPTSC

⋂
SetontPMAN |

|SetontPMAN | (14)

PrecisionProperty =
|SetontPTSC

⋂
SetontPMAN |

|SetontPTSC | (15)

Here, SetontCTSC and SetontPTSC are the set of classes and the set of Properties
extracted by TSC approach respectively. SetontCMAN and SetontPMAN are the
set of classes and the set of properties extracted by domain experts respectively.

3.2 Class Consistency Analysis

After learning, we can get the class hierarchies of the domain ontology. However,
these classes may be inconsistent and can not be used correctly. For instance, sup-
pose Class A and Class B are disjoint, and Class C is a subclass of both Class A
and Class B. Then Class C is an inconsistent class and can not have any individ-
uals since something can not be the individual of disjoint classes. Therefore, we
should check the consistence before using the newly generated ontology.

Here, we use Jena’s DIG interface [12] to invoke Racer [13] and perform the
consistency check. The ontology can be sent to Racer which then automatically
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computes the class hierarchies and checks the logical consistency of the ontology.
If some inconsistent classes are found, we modify their superclasses or themselves.
Finally, we edit the consistent ontology in ontology editors.

4 Ontology Evolution

With the update of the Web documents, the corresponding ontologies should
evolve as well. In this paper, we propose a semi-automatic method to perform
ontology evolution. We take the current domain ontology as an ontology seed.
When new documents in this domain are retrieved, we calculate the similarities
between documents and sorts which have been saved in SOM neural network.
If the similarities are no less than a preappointed threshold value, then the
corresponding documents are classified into these sorts. Then, we annotate them
based on the ontology seed and add the generated individuals into the ontology. If
the similarities are less than the threshold value, there may be some individuals
which the ontology seed can not describe. In this case, we take these unsorted
documents as the input and use our TSC approach again to update the ontology
schema. Then, we add the generated classes, properties and individuals into the
ontology.

However, the newly added content may provoke inconsistencies. So we should
use Racer to check the updated ontologies and fix possible inconsistencies. There
are two ways of doing this checking. One way is that after all the changes ex-
ecuted, the reasoner is invoked to do a single checking. The other is that the
change and checking are performed by turns. We use the later method since
checking the entire ontology is costly. Moreover, when the inconsistency are
found, the roll back of the ontology into the initial consistent state is inevitable.
This also occupy lots of the system resource. By using the later method, if the
inconsistency is found by the reasoner, we can easily know which change induces
this inconsistency and fix it in time before the next change.

5 Experiment

Our two-stage clustering approach is carried out on a PC with an Intel Pentium
1.8GHz CPU and 512M of RAM. We use a sample set containing 212 documents
about automobiles and build the automobile ontology. We use feature vectors
with 105 dimensions to represent documents. These documents are firstly used
for training SOM neural network described in section 2. Its parameters setting
is as follows: the dimension of input nodes is 105; the number of neurons in the
output layer is 20 × 20; the winning area is a square (12 neurons in each side)
with the BMU in the center; the number of the training step is 1000 and the
initial learning-rate is 0.97.

After training, we find these documents belonging to six sorts. By analyzing
their labels, we define the six sorts are Model, Participants in Automobile Market,
Performance, News, Technology and Automobile Culture. Then for each sort, we
calculate the total frequency of each word and get the feature vector by cutting
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the long vector whose values are arranged by descending order to a new feature
vector with 20 dimensions. We re-collect the feature documents which contain
not less than 80% of the words appearing in the new feature vector of the sort
and build an ontology based on them.

By lexical analysis, we can identify the nouns and verbs in the feature doc-
uments. Now, we use agglomerative hierarchical clustering to build the class
hierarchies for our automobile ontology. In order to compare our TSC approach
to the conventional ontology-generation method, we select 35 common individ-
uals contained in every sort. In Model sort, each individual has 12 properties
denoted as Price, Length, Width, Height, Air Capacity, Gears, Top Speed, Accel-
eration, Fuel Consumption, Category, Max. Output and Production Place(value
1 denotes “homemade” and value 2 denotes “imports”). Based on these proper-
ties, we get the class hierarchy which is shown in Figure 2 after clustering.
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Fig. 2. Hierarchical clustering in Model
sort

Fig. 3. Hierarchical clustering in Per-
formance sort

Moreover, by running our program, we know that the value of cophenetic
correlation of this clustering is 0.600. For another instance, in Performance sort,
each individual has 6 properties denoted as Safety Index, Power Index, Cross-
Country Index, Economy Index, Comfort Index and Brand Index, which are
evaluated using float numbers respectively. The corresponding class hierarchy is
shown in Figure 3 and the value of cophenetic correlation is 0.804.

We compare the performance of our TSC approach to that of conventional
ontology-generation method which relies on hierarchical clustering. For com-
parison, we select documents containing aforementioned 35 individuals here.
After clustering, We can get the value of cophenetic correlation is 0.571. From
Table 1, we can find that the values of cophenetic correlations associated with our
TSC approach are all higher than the value of cophenetic correlation associated
with the conventional hierarchical clustering. However, from the class hierarchy,
we can not identify the classes easily since the clustering is rough. Traditional
ontology-generation method clusters all the individuals in the domain without
pre-classification. Contrarily, by using two-stage clustering, TSC can pre-classify
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Table 1. TSC approach versus con-
ventional hierarchical clustering

Method Cophenetic Correlation

Sort 1 0.755
Sort 2 0.804

TSC Sort 3 0.796
Sort 4 0.680
Sort 5 0.665
Sort 6 0.600

Conventional HC 0.571

Table 2. Performance evaluation
for TSC approach

resource Recall/% Precision/% Emeasure

Individual 62.32 80.27 0.298

Class 65.82 84.16 0.261

Property 63.59 90.37 0.253

Fig. 4. Class hierarchy for Model sort Fig. 5. Class hierarchy for Performance
sort

the documents which contain individuals into several sorts and generate the class
hierarchies of domain ontologies more reasonably and accurately.

From Figure 3, we can find that Automobile 3, Automobile 4, Automobile 28,
Automobile 2 and Automobile 19 are classified into one class named
LowAirCapacityAuto. Thereafter, this class, HighAirCapacityAuto class and Mod-
erateAirCapacityAuto class are incorporated into a new class LowOutputLowFu-
elConsumptionAuto. Therefore, we can get the ontology corresponding to Model
sort from the bottom to the top according to the class hierarchy in Figure 2. Like-
wise, the class hierarchies of other sorts can be generated in the same way. The
results of TSC approach’s performance evaluation stage are shown in Table 2.
Then, we send the automobile ontology to Racer to checking its consistency. Some
inconsistencies are found during the reasoning. Finally, we edit our automobile
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ontology in protégé [14]. The class hierarchies ofModel and Performance in protégé
are shown in Figure 4 and Figure 5.

6 Related Work

Ontology can be built from various sources, such as documents(structured, un-
structured, or semi-structured), relational databases and existing preliminaries.
Most methods for learning ontology from documents employ statistics and a
document corpus. The corpus is usually obtained from World Wide Web and
WordNet is usually used to construct topic signature. Patterns are also involved
to mining relations between words. Cimiano et al. cluster nouns based on similar-
ities and construct a hierarchy by using Hearst-patterns [15]. Agirre et al. propose
a framework to define hierarchical term clustering methods to specific syntactic
constructions [16]. Since knowledge is not static but evolves timely, ontology
extending become an very important part of ontology research. In Zurawski’s
approach [17], when the ontology evolves, the whole system is kept coherent
using lightweight methods for maintaining global consistency. Moreover, many
researchers build ontologies with limited human effort by using formal concept
analysis [18], natural language processing [19] and the clustering technique [20].
Some automatic tools for learning ontologies are proposed recently, such as On-
toLT, TextToOnto or OntoLearn. However, they can not deal with the Chinese
corpus and lack the interaction with users who are usually most familiar with
the domain.

7 Conclusion

This paper proposes a TSC approach for semi-automatically building ontologies
from Chinese Web documents. The first clustering can roughly classify domain
documents into several sorts without supervision. After the identification of in-
dividuals and their properties, ontologies can be built according to the class
hierarchies automatically generated by the second clustering. The experimen-
tal result indicates that TSC can overcome the interfere brought by the docu-
ments which are unhelpful for building domain ontologies. Moreover, TSC does
not need much artificial interventions comparing to the conventional ontology-
building methods. Our long-term goal is to add rules for finding and handling
incorrect and conflicting information automatically in the information extraction
process.
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Abstract. A unifying logic is built on top of ontologies and rules for the
revised Semantic Web Architecture. This paper proposes ALCu

P , which
integrates a description logic (DL) that makes a unique names assump-
tion with general rules that have the form of Datalog Programs per-
mitting default negation in the body. An ALCu

P knowledge base (KB)
consists of a TBox T of subsumptions, an ABox A of assertions, and a
novel PBox P of general rules that share predicates with DL concepts
and DL roles. To model open answer set semantics, extended Herbrand
structures are used for interpreting DL concepts and DL roles, while open
answer sets hold for general rules. To retain decidability, a well-known
weak safeness condition is employed. We develop DL tableaux-based al-
gorithms for decision procedures of the KB satisfiability and the query
entailment problems.

1 Introduction

Based on input from the Semantic Web Rules community, the Semantic Web
Architecture has been recently reconsidered by Tim Berners-Lee [3]: ontologies
and rules are now sitting side by side between RDF(S) and a unifying logic
layer. The Web Ontology Language (OWL), whose formalization relies directly
on Description Logic (DL) [2], dates back to a W3C Recommendation released
on 10 February 2004 [23]. Subsequently, W3C announced the formation of the
Rule Interchange Format (RIF [24]) Working Group on 7 November 2005, aiming
to specify a format for rules in the Semantic Web chartered to allow “knowledge
expressed in OWL and in rules to be easily used together”. Not surprisingly, how
to best combine OWL/DL and rules has become a topic of heated discussions
in the Semantic Web community.

At the top-level, those integration approaches are either homogeneous or hy-
brid [1]. Early work in the hybrid direction comprises AL-log [7] and CARIN [16],
both of which extend Datalog rules with DL constraints. Recent work prefers a

M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 163–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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more general and tight integration, such as DL + log [22] (originating from r-
hybrid KBs [21]) and HEX-programs [8] (originating from dl-programs [9]). Their
generality appeals to negation and disjunction in rules, namely Datalog¬,∨, while
their tightness calls for certain safeness conditions that limit the interaction be-
tween the DL component and rules.

In hybrid approaches, ontology and rule predicates are always kept distinct.
Homogeneous frameworks instead permit predicate sharing in a syntactically and
semantically coherent manner. DLP (Description Logic Programs [11]) has been
proposed as the intersection of DL and Datalog rules, while SWRL
(Semantic Web Rule Language [25]) is their union. Unfortunately, DLP seems
too restrictive, and SWRL seems too expressive (hence is undecidable).

Reduction is another way to build a homogeneous platform. The paper [15]
works on reducing DL KBs to disjunctive Datalog programs, getting ready for an
extension with DL-safe rules [19] and even MKNF rules [18]. There, DL-safeness
is imposed as the condition for grounding rule variables with named individuals.

Summarizing, from a practical perspective, hybrid approaches are component-
based, using plug-ins of both DL reasoners and rule engines, in addition to well-
defined interfaces. Most homogeneous approaches make use of translators from
the DL component into rules (even first-order formulae), followed by running
rule engines (even first-order provers) with support for those reduced languages.
We totally agree that reusing existing reasoning tools (e.g., DL reasoners and
rule engines) facilitates various applications on the Semantic Web. But, towards
a unifying logic on top of ontologies and rules, as envisioned by [3], it makes
sense to develop a novel algorithm specifically for the homogeneous integration
of DL and general rules.

This paper extends a DL KB – consisting of a TBox T of subsumptions and
an ABox A of assertions – with a PBox P of general rules, i.e., Datalog¬ rules
permitting default negation for atoms in the body, in a homogeneous manner.
Particularly, we show the following characteristics:

Sharing predicates. Rule predicates are exactly DL concepts and DL roles,
taking advantage of the expressivity and reasoning power of both DL and rules.
Negative atoms. The default negation “not” is allowed to prefix atoms in the
body, making non-monotonicity applicable. Note that the classical negation “¬”
is still preserved for DL’s negative constructor.
Open Answer Set Semantics. Extended Herbrand structures are used for
interpreting DL concepts and DL roles, while open answer sets hold for general
rules, making a unique names assumption. Unnamed individuals, e.g. as intro-
duced by DL existential restrictions, also occur in the open domain. To retain
decidability, a well-known weak safeness condition [22] is employed, grounding
variables in the rule head with named individuals.
Tableau-based algorithms. Decision procedures for the knowledge base (KB)
satisfiability problem and the query entailment problem are designed on com-
pletion graphs, getting rules incorporated into classical DL tableaux algorithms
(which originally work on completion forests or trees).
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The remainder of this paper starts with preliminaries for integrating DL and
general rules in our homogeneous language ALCu

P
. The syntax and semantics

are defined in Section 3. Section 4 elaborates on algorithms, giving decision
procedures for the KB satisfiability problem and the query entailment problem.
Finally, Section 5 is our conclusion. Because of paper space limitations, detailed
proofs are available in an Online Appendix.1

2 Preliminaries

Description Logic, as discussed in this paper, is a fragment of classical first-
order logic (FOL). Therefore, the semantics for DL is based on first-order in-
terpretations, of which the domain is arbitrary. However, a fixed domain, viz.
the Herbrand universe, in which rule variables are instantiated, is the key to
the semantics of logic programming (LP). When combining DL and rules, we
first of all should figure out the domain in common. A good candidate is the
so-called open domain, i.e., an arbitrary non-empty countable superset of the
Herbrand universe, as proposed for open answer set programming to solve the
lack of modularity in closed world answer set programming [12].

Moreover, in the context of LP, rule variables are ultimately substituted by
constants, receiving a grounded version of rules. Within a combined signature
of DL and rules [5], constants are referred to as named individuals, which are
asserted explicitly into the corresponding KB, and the Herbrand universe ex-
actly consists of those constants. Nevertheless, DL existential restrictions would
introduce unnamed individuals, and unnamed individuals also act as constants
but unfortunately are beyond the Herbrand universe. Again, the open domain
appears to be the right place for capturing unnamed individuals. Referring to [6],
if there are no unnamed individuals in the domain, we say the parameter names
assumption (PNA) applies. Not surprisingly, we prefer not to adopt PNA.

Open answer set semantics adheres to a unique names assumption (UNA),
which is not the case for DL. However, if desired, the UNA can be made explicit
in DL by adding an assertion a �= b for each pair of differently named individuals
to the KB. In this respect, we also adopt UNA. Since, the combination of PNA
and UNA is called the standard names assumption (SNA), our proposal is under
UNA but neither PNA nor SNA, while DL + log [22] etc. adopted SNA.

Next, we should point out the (un)decidability issue. Actually, a decade ago,
the undecidability of an unrestricted combination of DL and rules was proved
with CARIN [16]. For reobtaining decidability, safeness conditions were pro-
posed, e.g., role-safeness in [16], DL-safeness in [19] and weak safeness in [22],
each of which ensures a certain separation between DL and rule predicates.
Differing from those predicate-separated systems, this paper is based on rule
predicates shared with DL concepts and DL roles. Thus, we merely require the
most general Datalog safeness in the syntax, while we adopt a semantic weak
safeness condition that relies on grounding variables in the rule head with named
individuals to avoid undecidability.
1 http://www.is.pku.edu.cn/˜mayyam/proof.pdf
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On the other hand, DL is a family with many layers [2][13]. Bottom up,
ALC is a basic and simple language, permitting concept descriptions via C1 �
C2, C1 �C2,¬C, ∀R.C, and ∃R.C, where C, C1, C2 are concepts and R is a role.
Augmented by transitive roles, ALC becomes ALCR+ , denoted by S in the fol-
lowing. SI is an extension to S with inverse roles, followed by SHI with role
hierarchies. It is called SHIF if extending by functional restrictions, SHIN if
by cardinality restrictions, and SHIQ if by qualified number restrictions. Sup-
port for datatype predicates (e.g., string, integer) brings up the concrete domain
of D, and using nominals O helps construct concepts with singleton sets. With
the expected pervasive use of OWL, SHIF(D) and SHOIN (D) are paid much
attention: OWL Lite is a syntax variant of one, and OWL DL, of the other.

As the DL foundation, ALC is regarded as the right level for our homoge-
neous DL-rule integration, observing that the expressivity of extending ALC
with Datalog rules covers that of SHI, i.e., ALCR+HI, except for the se-
mantic weak safeness condition for rules. Specifically, the role hierarchy H of
R1 � R2 is captured by R2(x, y) ← R1(x, y), and inverse roles I and tran-
sitive roles R+ are characterized, respectively, by Inv(R)(y, x) ← R(x, y) and
S(x, z) ← S(x, y), S(y, z), where R1, R2, R, Inv(R) and S are roles, in addition
to Trans(S) being true.

At this point, we are ready for a proposal of ALCu
P
, where the superscript “u”

denotes the adoption of UNA, and the subscript “P” means a program of general
(normal [17]) rules. Even if the “not” operator of general rules in P is removed
from ALCu

P
, our proposal develops SHI into a language with “more Datalog and

less DL”. The “more Datalog” characteristic is evident, since ‘end-user’ rules are
integrated right into the foundation of the DL machinery. The “less DL” char-
acteristic results from the ‘SHI-desugaring’ rules, translating the role hierarchy
H, inverse roles I, and transitive roles R+, but because of their semantic weak
safeness condition not providing full support for SHI on top of ALC.

This finally brings us to the design of algorithms. DL tableaux algorithms
yield completion trees (resp. forests) for checking DL concept satisfiability [13]
(resp. ABox consistency [14]). Those completion trees or forests are finite, and
represent a set of possibly infinite models. For getting general rules incorpo-
rated homogeneously into this setting, we will use a parameter l and develop
l-completion graphs. Thus, our algorithm is still tableau-based, and we conclude
that: (1) An ALCu

P
KB K is satisfiable iff the algorithm yields a complete and

clash-free lK-completion graph; and (2) a query Q is entailed by an ALCu
P

KB
K iff Q is mappable to all complete and clash-free lK,Q-completion graphs that
the algorithm yields. More technical details are discussed below.

3 The ALCu
P

Language

Syntactically, ALCu
P
, built on ALC-concepts and ALC-roles, has three parts: a

TBox T of subsumptions, an ABox A of assertions, and additionally, a PBox
P of general rules. Semantically, open answer sets are associated with extended
Herbrand structures, treating weak safeness as a semantic condition for rules.
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3.1 Syntax

Let I be a finite set of named individuals, and V = {x, y, z, x1, · · · } a countable
set of variables. A (Datalog) term is a named individual or a variable.

Let NC be a set of concept names and NR a set of role names. The set R
of ALC-roles is NR. The set C of ALC-concepts is the smallest set such that
(1) The top concept 	 and the bottom concept ⊥ are ALC-concepts; (2) Every
concept name in NC is an ALC-concept; (3) If C, C1, C2 are ALC-concepts and
R is an ALC-role, then ¬C, C1�C2, C1�C2, ∃R.C, ∀R.C are also ALC-concepts.

A concept is said to be in negation normal form (NNF) if negation occurs only
in front of concept names. By pushing negations inwards using a combination
of DeMorgan’s laws, any concept can be translated to NNF in linear time, and
we will assume that all concepts are in NNF in this paper. Given a concept C,
clos(C) is the smallest set that contains C and is closed under subconcepts
and negation (in NNF). For a set of concepts M , clos(M) =

⋃
C∈M clos(C).

The size of clos(C) is linear in the length of C, and the size of clos(M) is
polynomial in the size of M .

Definition 1. An ALCu
P

KB has the form K = (T ,A, P), where
TBox T : Subsumptions are C1 � C2 with C1, C2 ∈ C
ABox A: Assertions are C(a) or R(a, b) with C ∈ C, R ∈ R, and a, b ∈ I
PBoxP:Rulesarer : p(u) ← q1(v1), · · · , qm(vm), notqm+1(vm+1), · · · notqn(vn)
with p, qi ∈ C∪R, and u, vi are vectors of terms in I∪V, for each 1 � i � m � n
(each vector has length 1 or 2 since concepts from C become unary predicates
and roles from R become binary predicates)

We remark that weak safeness [22] for general rules originally assumes a lexical
separation of DL and rule predicates, while ALCu

P
permits rule predicates shared

with DL concepts and DL roles. Later, we will show how weak safeness is moved
into the semantics. Syntactically, rule variables in the PBox P are merely required
to satisfy the most general Datalog safeness condition. That is, every variable in
a rule r must appear among at least one of the v1, · · · , vm.

3.2 Semantics

Referring to [6], we introduce first-order and (extended) Herbrand structures.
Given a function-free first-order languageL, an L-structure is a pair I = 〈U, I〉,

where the universe U = (D, σ) consists of a non-empty domain D and a function
σ : I∪D′ → D which assigns a domain value to each individual, and σ(d) = d for
all d ∈ D′, given I ∩ D′ = ∅. Elements of D′ are called unnamed individuals. We
remark that the corresponding definitions in [6] are less clear, where σ : I∪D → D
and any d ∈ D is defined as an unnamed individual if there is no i ∈ I such that
σ(i) = d.

Using σ, we formalize UNA, PNA, and SNA as follows: in case σ is injective,
the UNA applies; in case D′ is empty, the PNA applies; the SNA is exactly the
combination of UNA and PNA.

We call I an L-interpretation over D, which assigns a relation pI ⊆ Dn to
each n-ary predicate symbol p (here n ≥ 1). Being a fragment of function-free
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first-order logic, DL can also rely on structures for interpreting concepts (here
n = 1) and roles (here n = 2).

Answer set semantics is usually defined in terms of a Herbrand structure that
has a fixed universe, namely Herbrand universe H = (I, id), where id : I → I is
the identity function. Obviously, by I and id, the SNA applies here.

Relaxing the PNA, open answer set semantics considers an extended Herbrand
structure based on an extended Herbrand universe eH = (D, id), where id :
I ∪ D′ → D is still an identity function and id(d) = d for all d ∈ I ∪ D′, given
I∩D′ = ∅. Thus, by id, the UNA applies, but unnamed individuals reside in D′.
Definition 2. An extended Herbrand structure I = 〈(D, id), I〉 is defined for a
set of named individuals I, a set of concepts C and a set of roles R, where

id : I ∪ D′ → D and id(d) = d for all d ∈ I ∪ D′, given I ∩D′ = ∅
I : C → 2D for concepts and I : R → 2D×D for roles

such that for concepts C, C1, C2 ∈ C and roles R ∈ R, the following are satisfied:
	I = D ⊥I = ∅ (¬C)I = D\CI (C1�C2)I = CI

1∩CI
2 (C1�C2)I = CI

1∪CI
2

(∃R.C)I = {e1 ∈ D|∃e2.(e1, e2) ∈ RI and e2 ∈ CI}
(∀R.C)I = {e1 ∈ D|∀e2.(e1, e2) ∈ RI implies e2 ∈ CI}

An associated valuation vI of an interpretation I over D is a mapping s.t.
vI(C(d)) = true, if d ∈ CI , where C ∈ C and d ∈ D
vI(R(d1, d2)) = true, if (d1, d2) ∈ RI , where R ∈ R and d1, d2 ∈ D
An extended Herbrand structure I satisfies a TBox T if, CI

1 ⊆ CI
2 for all C1 � C2

in T , where C1, C2 ∈ C. Such a structure I is called a model of T , written as
I |= T . An extended Herbrand structure I satisfies an ABox A if, id(a) = a ∈ CI

and (id(a1), id(a2)) = (a1, a2) ∈ RI for all C(a) and R(a1, a2) in A, where
C ∈ C, R ∈ R and a, a1, a2 ∈ I. Such a structure I is called a model of A,
written as I |= A.

To define a model of a PBox P, we start by grounding P. The grounding Pg

of P w.r.t. an extended Herbrand universe eH = (D, id) is the set of all rules
obtained as follows. For every rule r in P,

(1) keep each named individual a ∈ I appearing in r unchanged as id(a) = a ∈ D,
(2) replace each variable v ∈ V appearing in r with a certain d ∈ D,
(3) replace each variable v ∈ V appearing in the head of r with a certain d ∈ I.

In order to guarantee decidability, the semantic condition of (3) is proposed.
While DL+ log [22] has defined such a (syntactical) weak safeness condition for
hybrid rules, we rephrase it semantically for homogeneous rules here. That is,
only named individuals are legal for grounding the head of rules, so unnamed
individuals cannot be propagated by rules.

Below, given an extended Herbrand structure I = 〈(D, id), I〉, we will first
consider the grounded PBox Pg of rules without not, i.e., m = n for all rules r
in Pg. Put differently, Pg corresponds to the positive (function-free Horn) case
of traditional logic programming. The extended Herbrand model of Pg is a set S
such that, for any rule r : p(u) ← q1(v1), · · · , qm(vm) in Pg, if qi(vi) ∈ S for
all 1 � i � m, then p(u) ∈ S. By λ(Pg), we denote the least extended Herbrand
model of Pg in which none of the rules contains not.
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Next, suppose Pg is a grounded PBox of general rules and S a set. Similarly
as in the Gelfond-Lifschitz transformation [10], we denote with Γ (Pg, S) the set
of rules obtained from Pg by deleting

1. each rule r ∈ Pg that has a “not q(v)” in the rule body with q(v) ∈ S;
2. all “not q(v)” occurrences in the bodies of the remaining rules.

Clearly, Γ (Pg, S) does not contain “not” any more, and its extended Herbrand
model is already defined above. If the least extended Herbrand model of Γ (Pg, S)
coincides with S, then we say that S is an open answer set of Pg. In other words,
open answer sets of Pg are characterized by the equation S = λ(Γ (Pg, S)).

An extended Herbrand structure I satisfies a PBox P if the set S = {C(d)|
vI(C(d)) = true}∪{R(d1, d2)|vI(R(d1, d2)) = true} is an open answer set of Pg.
Such a structure I is called a model of P, written as I |= P.

An extended Herbrand structure I satisfies an ALCu
P

KB K = (T ,A, P) if I
is a model of T ,A and P. Such a structure I is called a model of K, written as
I |= K. A KB K is satisfiable if there is a model of K. Two KBs K1 and K2 are
equivalent if the models of K1 are also the models of K2, and vice versa.

3.3 An Example

We demonstrate an example in Table 1, about the policy of “one family, one
child” for the current generation in China.

Disjunction is exemplified by (1), a cyclic TBox by (2) and existential restric-
tion by (3), all of which state the properties of a person. Among persons, the
current generation is described in (4) having OnlyChild as descendants.

Recursive rules are used for the “descend” relationship by (5) and (6), of
which (5) is the base and (6) is the propagation. Rule (7) describes a symmetric
relationship of “hasSpouse”. Rules (8) and (9) reflect the disjunction of male and
female, according to (1), while role subsumptions of having parents are shown in
(10). Excluding unmarried parents, we suppose, in (11), someone having a child
has a spouse. As for (12) and (13), the OnlyChild has no sibling, while someone
whose parents both have no siblings has no cousin.

Default negation appears in (14) and (15), also DL existential restriction
participates in the rule head. The current generation, in general, has siblings
(resp. cousins), but not in the case when there is an explicit statement of having
no sibling (resp. having no cousin).

Classical negation, serving for DL negative concepts, appears in the head of
rules (16), (17) and (18). It seems redundant to state both (18) and (13), whose
heads are complements of each other. We remark that “hasSibling”, in the rule
body of (18), is possibly derived from (14), while (13) helps to override the
default in (14). However, (14) merely concerns the current generation, and (13)
is for all.

In (19), classical negation gets along with default negation, stating that On-
lyChild generally has another OnlyChild as his/her spouse.

So far, we conclude definitely that [1]: descendants of the current genera-
tion are those without any sibling, as derived from (4)(12). By default, we con-
clude that [2]: (14)(16) and (15)(17) respectively state the current generation has
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Table 1. An example of an ALCu
P KB

(1) Person � Male � Female Person is male or female.
(2) � ∀ hasChild.Person Any child of a person is a person.
(3) � ∃ hasFather.Male �∃ hasMother.Female Any person has a father and a mother.
(4) CCG � Person �∀ descend.OnlyChild CCG: The current generation.

(5) descend(x, y) ← hasChild(x, y). The relationship of descend is the
(6) descend(x, z) ← descend(x, y), hasChild(y, z). transitive closure of having children.

(7) hasSpouse(x, y) ← hasSpouse(y, x). Having spouse is symmetric.
(8) hasFather(x, y) ← hasChild(y, x), Male(y). A male having a child is the father.
(9) hasMother(x, y) ← hasChild(y, x), Female(y). A female having a child is the mother.
(10) hasFather � hasParent hasMother � hasParent Parents consist of father and mother.
(11) ∃ hasChild.Person � ∃ hasSpouse.Person One having a child has a spouse.

(12) NoSibling(x) ← OnlyChild(x). One in OnlyChild belongs to NoSibling.
(13) NoCousin(x) ← hasFather(x, y), NoSibling(y). One whose father and mother are both

hasMother(x, z), NoSibling(z). in NoSibling belongs to NoCousin.

(14) ∃ hasSibling.Person(x) ← CCG(x), One CCG not being known as NoSibling
not NoSibling(x). has some sibling.

(15) ∃ hasCousin.Person(x) ← CCG(x), One CCG not being known as NoCousin
not NoCousin(x). has some cousin.

(16) ¬ NoSibling(x) ← hasSibling(x, y). One with sibling is outside of NoSibling.
(17) ¬ NoCousin(x) ← hasCousin(x, y). One with cousin is outside of NoCousin.
(18) ¬ NoCousin(x) ← hasParent(x, y), hasSibling(y, z). One special is outside of NoCousin.

(19) OnlyChild(y) ← hasSpouse(x, y), OnlyChild(x), The OnlyChild generally has
not ¬ NoSibling(y). another OnlyChild as his/her spouse.

Therefore

[1] CCG � ∀descend.NoSibling
[2] CCG � ¬NoSibling �¬NoCousin �∀hasChild.∀descend.NoCousin

[3]

Antecedent(*) CCG(a). CCG(b). OnlyChild(a). ∀hasParent.OnlyChild(b).
Consequence(*) NoSibling(a). ¬NoCousin(a). NoCousin(b). ¬NoSibling(b).

Suppose AmusingFamily ← amusedBy(x, y).
amusedBy(x2, y2) ← hasSpouse(x1, y1), NoSibling(x1), NoCousin(y1),

hasCousin(x1, x2), hasSibling(y1, y2), not amusedBy(y2, x2).
Conclude AmusingFamily when Antecedent(*) holds in addition to hasSpouse(a, b).

siblings and cousins, while (13) implies that children of the current generation
will have descendants without any cousin. For [3], when the antecedent (*) arises,
we have one person a and the other person b as the current generation. Being
OnlyChild, a has no sibling – an exception to (14). An exception to (15) is b,
whose parents are both OnlyChild, and b has no cousin.

Suppose an amusing family, in which one is amused by the other. For a couple,
one has a cousin but no sibling, and the other has a sibling but no cousin. As
to such a case, the cousin is amused by the sibling, or in the converse direction.
Given the antecedent (*) plus hasSpouse(a, b), an amusing family does exist.

4 Algorithms

In the following, if not stated otherwise, for an ALCu
P

KB K = (T ,A, P), we
denote that: (1) ΣC is the closure of concepts occurring in T , A and P; (2) ΣR
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is the set of roles occurring in T , A and P; (3) ΣI is the set of named individuals
occurring in A and P.

The algorithm first rewrites TBox subsumptions with rules, and K = (T ,A, P)
becomes K′ = (∅,A, PT ), followed by K′′ = (∅,A, PT ,E) to compute extensions of
complex ALC-concepts. Upon that, we will establish completion graphs, towards
the decision procedure for the KB satisfiability problem and the query entailment
problem, respectively.

4.1 Preprocessing

Given an ALCu
P

KB K = (T ,A, P), concept subsumptions in the TBox T are
rewritten such that P

T = P ∪ {C2(x) ← C1(x)|C1 � C2 ∈ T }, and the KB is
updated to K′ = (∅,A, PT ).

Next, the computation, along with reasoning, is used to evaluate extensions
of complex ALC-concepts, and now the KB becomes K′′ = (∅,A, PT ,E). Starting
from P

T , we obtain P
T ,E by appending rules for each computable ALC-concept

in ΣC , that is C1 � C2, C1 � C2 and ∃R.C. We observe that classical negation
appears in ¬C and ∀R.C, where ∀R.C concerns a case for the negation of R.
Incomplete information possibly leads to neither positive nor negative atoms,
which motivates us to introduce universal concepts of C�¬C and ∀R.C�∃R.¬C
for ¬C and ∀R.C, respectively. So that, individuals in the top concept 	 are
assigned into those universal concepts.

C1 � C2(x) ← C1(x), C2(x). C1 � C2(x) ← C1(x). C1 � C2(x) ← C2(x).
∃R.C(x) ← R(x, y), C(y). C � ¬C(x) ← 	(x). ∀R.C � ∃R.¬C(x) ← 	(x).

Above, computation rules are specified for every concept ¬C, C1 � C2, C1 �
C2, ∃R.C and ∀R.C appearing in ΣC . Since these ‘system-level’ rules are de-
signed for DL concepts, named individuals and facts need not to stay here. We
also realize that, in a similar but more elaborate manner, [12] simulates DLs
via open answer set programming. Interestingly, support for DL reasoning to-
tally replies on running simulation rules in [12], while we would develop DL
tableaux-based algorithms getting the above computation rules involved.

In the Online Appendix1, it shows that: The ALCu
P

KB K = (T ,A, P) and its
updated version K′ = (∅,A, PT ) as well as K′′ = (∅,A, PT ,E) are equivalent.

4.2 Completion Graphs

Observing that role assertions are possibly refreshed by rules when such a role
occurs in the rule head, completion graphs instead of completion forests [14] or
completion trees [13] are studied in this paper.

A completion graph is a (directed) graph G where each node u is labeled with
a set L(u) ⊆ ΣC and each edge 〈u, v〉 is labeled with a set L(〈u, v〉) ⊆ ΣR. If
there is an edge 〈u, v〉 in G, then we say that v is the successor of u and u is the
predecessor of v. The transitive closure of predecessor (resp. successor) is called
ancestor (resp. descendant). For a node u, L(u) is said to contain a clash if, for
some concept C, {C,¬C} ⊆ L(u).
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Initially, we construct a graph GA for an ABox A as follows.

– A node ua is created, for each named individual a ∈ ΣI .
– An edge 〈ua, ub〉 is created, if R(a, b) ∈ A for some role R ∈ ΣR and a, b ∈ ΣI .
– The labels of these nodes and edges are initialized by
L(ua) = {C|C(a) ∈ A} and L(〈ua, ub〉) = {R|R(a, b) ∈ A}.

Running CompGraph(GA), the algorithm proceeds.
Procedure CompGraph

Input: A graph Gin

Output: A set of graphs Gout

begin Gout := ∅
for each g in ExpGraph(Gin) do

for each g′ in SmsGraph(g) do

if g′ is complete then Gout := Gout ∪ {g′}
else Gout := Gout∪ CompGraph(g′)

return Gout

end

Expansion principles in Table 2 are ready for the procedure of ExpGraph. The
application of �-principle is non-deterministic, branching graphs. The ∃-principle
is a generating principle since, possibly, fresh new nodes are inserted into the
graph. Besides, we call nodes having been located in GA as a-nodes, each of
which represents a named individual, and b-nodes for the others, each of which
represents a unnamed individual (e.g., being introduced by the ∃-principle).

Referring to definitions of n-tree equivalence, n-witness and n-blocking in
[16][20], as restated below, we present l-blocking for the ∃-principle in Table 2.
The parameter of l will take the value of lK for the KB satisfiability problem
and of lK,Q for the query entailment problem, given that

lK: The maximal of lr for all r in P
T ,E where lr is the number of variables in r

lQ: The length of a query Q and Section 4.4 presents more details
lK,Q: The maximal of lK and lQ

Definition 3. The n-tree of a node u is the tree that includes the node u and
its descendants, whose distance from u is at most n successor edges. We denote
the set of nodes in the n-tree of u by Vn(u).

Table 2. Expansion Principles for ExpGraph

�: if C1 � C2 ∈ L(u) and {C1, C2} � L(u)
then L(u) := L(u) ∪ {C1, C2}

�: if C1 � C2 ∈ L(u) and {C1, C2} ∩ L(u) = ∅
then L(u) := L(u) ∪ {C1} or L(u) := L(u) ∪ {C2}

∀: if ∀R.C ∈ L(u) and R ∈ L(〈u, v〉) but C �∈ L(v)
then L(v) := L(v) ∪ {C}

∃: if ∃R.C ∈ L(u) where u is an a-node or a b-node not being l-blocked,
there does not exist any node v such that R ∈ L(〈u, v〉) and C ∈ L(v)

then create a b-node v with L(v) := {C} and an edge 〈u, v〉 with L(〈u, v〉) := {R}
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Two nodes u, v in a graph G are said to be n-tree equivalent if there is an
isomorphism ψ : Vn(v) → Vn(u) s.t. (1) ψ(v) = u; (2) L(s) = L(ψ(s)), for every
s ∈ Vn(v); (3) L(〈s, t〉) = L(〈ψ(s), ψ(t)〉), for every s, t ∈ Vn(v).

A node u is an n-witness of a node v in a graph G if (1) u is an ancestor of
v, (2) u is n-tree equivalent to v, and (3) v is not in the n-tree of u.

A node w is n-blocked in a graph G if (1) one of its ancestors is n-blocked, or
(2) w is in an n-tree of which root has an n-witness. Suppose u be an n-witness
of v and ψ : Vn(v) → Vn(u) the isomorphism. For any node w in the n-tree of
v, w is n-blocked by ψ(w).
A completion graph G is called complete when for some node u in G, L(u)
contains a clash, or when none of the expansion principles is applicable. The
output of ExpGraph consists of complete completion graphs, each of which again
becomes the input of SmsGraph. Intuitively, the procedure of ExpGraph serves
for DL constructors, while the procedure of SmsGraph for general rules.

With an input graph g to SmsGraph, a “bottom” set Bg and a “top” set
Tg are built. The former collects those labels in g such that Bg = {C(u)|C ∈
L(u)}∪{R(u, v)|R ∈ L(〈u, v〉)}, and the latter concerns all possible constituents
s.t. Tg = {C(u)|C ∈ ΣC and u appears in g}∪ {R(u, v)|R ∈ ΣR and u, v appear
in g}. By the Gelfond-Lifschitz transformation [10], we denote a stable set Sg s.t.

1. Bg ⊆ Sg ⊆ Tg;
2. For a rule r : p(u) ← q1(v1), · · · , qm(vm), not qm+1(vm+1), · · · not qn(vn)
satisfying all qj(σ(vj)) �∈ Sg and m + 1 � j � n, in P

T ,E , where σ is a term
assignment w.r.t. g and r, if qi(σ(vi)) ∈ Sg for each 1 � i � m then p(σ(u)) ∈ Sg.

A term assignment σ w.r.t. g and r is a mapping which assigns

(1) a node in g to every variable in r,
(2) an a-node ua in g to every named individual a in r,
(3) an a-node in g to every variable appearing in the head of r.

Naturally, the assignment of (3) concerns the semantic weak safeness.
After receiving all stable sets, we “repay” the input graph g with an out-

put set of graphs, SmsGraph(g), each of which is constructed by a stable set
Sg s.t.

– Nodes are created the same as g;
– An edge 〈u, v〉 is created, if R(u, v) ∈ Sg for some R;
– Labels are L(u) = {C|C(u) ∈ Sg} and L(〈u, v〉) = {R|R(u, v) ∈ Sg}.

Since, the completion graph g′ in SmsGraph(g) updates g (e.g., having new
edges or more labels of nodes and edges), those expansion principles in Table 2
are possibly again applicable to g′. When g′ happens not to being complete, a
call to CompGraph(g′) is stacked. If completion graphs, obtained from procedures
of both ExpGraph and SmsGraph, are totally complete, the algorithm terminates.
We remark l-blocking, which occurs in the ∃-principle at Table 2, is crucial to
termination, and the following two subsections will elaborate on the parameter
l: one takes lK for the KB satisfiability problem, and the other is lK,Q for the
query entailment problem.
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4.3 The KB Satisfiability Problem
The above algorithm that yields lK-completion graphs is shown up as a decision
procedure for the satisfiability problem w.r.t. an ALCu

P
KB K = (T ,A, P).

Recalling that weak safeness plays a role in our algorithm, the Online Appendix1

declares the termination: For an ALCu
P

KB K, the algorithm terminates.
As to the soundness, which states that if the algorithm yields a complete

and clash-free lK-completion graph then K is satisfiable, we need to introduce
canonical structures for completion graphs (cf. [16] and [20]).
Definition 4. Suppose G be an lK-completion graph generated by the algorithm
for K. A canonical structure IG = 〈(DG, id), IG〉 for G is defined such that
1. DG := {u | u is a node in G}
2. For each named individual a ∈ ΣI, id(a) ∈ DG corresponds to its a-node ua

3. For each concept C ∈ ΣC, CIG := {u | C ∈ L(u)}
4. For each role R ∈ ΣR, (u, v) ∈ RIG if and only if (1) R ∈ L(〈u, v〉); or (2)
R ∈ L(〈ψ(u), v〉) where u is lK-blocked, t is the root of the lK-tree to which u
belongs, s is the witness of t, ψ : VlK(t) → VlK(s) is an isomorphism between the
lK-trees rooted with t and s.

Note that, for an lK-blocked node u, explicit edges, e.g., 〈u, v〉, are not available,
but implicit edges, e.g., 〈ψ(u), v〉, rather contribute to interpreting roles.

Specifically, if the algorithm yields a complete and clash-free lK-completion
graph G for an ALCu

P
KB K, a canonical structure IG = 〈(DG, id), IG〉 for G is

proved (in the Online Appendix1) as the model of K, so that K is satisfiable.
Next is the completeness, which states that if K is satisfiable, then the algo-

rithm yields a complete and clash-free lK-completion graph.
Since, K is satisfiable, by definitions, there is an extended Herbrand structure

I = 〈(D, id), I〉 satisfying the ABox A, the TBox T and the PBox P. Referring
to [14], we use I to trigger the application of the expansion principles such that
they yield a complete and clash-free lK-completion graph. To this propose, a
function π is defined, mapping nodes in a graph G to the domain D, as follows.

(1) For a named individual a, π(ua) := a where ua is the corresponding a-node.
(2) If π(u) = s is already defined, and a successor v of u was generated for
∃R.C ∈ L(u), then π(v) := t for some t ∈ D with t ∈ CI and (s, t) ∈ RI .

For all nodes u, v in a completion graph G, we claim a condition that
L(u) ⊆ {C|π(u) ∈ CI} and L(〈u, v〉) ⊆ {R|(π(u), π(v)) ∈ RI}. (*)

As shown in the Online Appendix1, the algorithm ends up with certain com-
plete lK-completion graph, denoted by GI , satisfying the condition (*). Because
I = 〈(D, id), I〉 is a model of K, we have CI ∩ (¬C)I = ∅ for any concept
C ∈ ΣC , which implies GI is clash-free. Otherwise, there exists a clash such
that {D,¬D} ⊆ L(u) ⊆ {C|π(u) ∈ CI} in GI , for some concept D and some
node u, making π(u) ∈ DI ∩ (¬D)I conflict with the model I. Summing up, GI
is the complete and clash-free lK-completion graph that the algorithm yields.

Theorem 1. The algorithm is a decision procedure for the satisfiability of an
ALCu

P
KB K = (T ,A, P), and decides the KB satisfiability problem in 3EXPTIME

w.r.t. the size of K.
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4.4 The Query Entailment Problem

Before we address this problem, queries are formalized.

Definition 5. A conjunctive query (CQ) q over an ALCu
P

KB K is of the form
being {p1(w1), · · · , pn(wn)}, where pi is either a DL concept or a DL role, and
wi is a (unary, binary) vector of terms, for each 1 � i � n. By lq, we denote
the length of a CQ q = {p1(w1), · · · , pn(wn)}, and lq = n.

A union of conjunctive queries (UCQ) q′ over an ALCu
P

KB K is of the form
being q1 ∨ · · · ∨ qm, where qj is a CQ for each 1 � j � m. By lq′ , we denote the
length of an UCQ q′ = q1 ∨ · · · ∨ qm, and lq′ = max{lqj |1 � j � m}.
For simplification, Q is said to be a query, whether Q is a CQ or an UCQ.
Queries are interpreted in a standard way. Given a query Q and an extended
Herbrand structure I = 〈(D, id), I〉, the variable substitution w.r.t. Q and I is
θ = {x1/t1, · · · , xn/tn}, which substitutes each variable xi ∈ V appearing in Q
with a (un)named individual ti ∈ D and 1 � i � n. We use the LP notation αθ
to apply θ to variables in an atom α. As for a CQ q, a structure I is a model
of q, denoted by I |= q, if there is a variable substitution θ w.r.t. q and I such
that I |= pi(wi)θ for each pi(wi) in q, where 1 � i � n. For an UCQ q′, I is a
model of q′, denoted by I |= q′, if I |= qj for some qj in q′, where 1 � j � m.

Given an ALCu
P

KB K and a query Q, we say K entails Q, denoted by K |= Q,
if I |= Q for each model I of K. The query entailment problem is to decide
whether K |= Q. We assume K being satisfiable, in this context; otherwise,
everything can be entailed from a contradictory KB.

Now, for an ALCu
P

KB K = (T ,A, P) and a query Q, we redefine that: (1) ΣC

is the closure of concepts occurring in T , A, P and Q; (2) ΣR is the set of roles
occurring in T , A, P and Q; (3) ΣI is the set of named individual occurring in
A, P and Q. The parameter lK,Q is the maximal of lK and lQ, and the previous
algorithm, as described in Section 4.2, will yield lK,Q-completion graphs.

Next, referring to [20], we establish mappings from the query to those ob-
tained lK,Q-completion graphs. For a CQ q : {p1(w1), · · · , pn(wn)} and a graph
G, a mapping δ maps named individuals and variables in q to nodes in G, s.t.
1. For each named individual a ∈ ΣI in q, δ(a) = ua is the corresponding a-node;
2. For each C(t) and R(t1, t2) in q where t, t1, t2 are named individuals or vari-
ables, C ∈ L(δ(t)) and R ∈ L(〈δ(t1), δ(t2)〉).

A CQ q is mappable to a graph G, denoted by q ↪→ G, if there exists such
a mapping δ. An UCQ q′ : q1 ∨ · · · ∨ qm is mappable to a graph G, denoted by
q′ ↪→ G, if qj ↪→ G for some qj in q′ where 1 � j � m.

Thus, the algorithm returns “Q is entailed by K”, denoted as K � Q, if for
all complete and clash-free lK,Q-completion graphs G that the algorithm yields,
Q ↪→ G holds, otherwise the algorithm returns “Q is not entailed by K”.

We direct readers to the Online Appendix1 for details on termination, sound-
ness, completeness, and complexity etc. Below is the resulting theorem.

Theorem 2. The updated algorithm is a decision procedure for the entailment
of an ALCu

P
KB K to a query Q, and decides the query entailment problem in

3EXPTIME w.r.t. the size of K.
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5 Conclusion

This paper presents an ALCu
P

KB, consisting of a TBox of subsumptions and
an ABox of assertions, augmented by a PBox of general rules sharing predicates
with the DL concepts and roles. For its open answer set semantics, extended Her-
brand structures are used to interpret DL concepts and roles, while open answer
sets hold for general rules. To retain decidability, a well-known weak safeness
[22] condition is employed. We extend DL tableaux-based algorithms to ALCu

P

decision procedures for the KB satisfiability and query entailment problems.
By way of comparison, CARIN [16] builds completion trees, which are used to

evaluate hybrid rules externally, so that the information flow is uni-directional,
i.e., from DL to rules but not vice versa. Our ALCu

P
constructs completion graphs

shared homogeneously between the DL and rule components, which makes bi-
directional information flow a characteristic of ALCu

P
.

Although existing DL reasoners and rule engines facilitate other related work
(e.g., [8][18][22]), we believe that novel algorithms, specified for a homogeneous
integration of DL and general rules, enable the newly envisioned unifying logic on
top of ontologies and rules in the Semantic Web. The unary/binary ALCu

P
logic

could be extended for n-ary relations, which may be realized by decomposition
into binary ones; this might also benefit from DLR’s [4] extension of binary DL
roles to n-ary DL relations; we currently explore which n-ary approach works
best with our (extended) ALCu

P
algorithms. On top of n-ary relations, further

rule layers, such as undecidable (function-full) Horn rules, could be built. On the
other hand, extensions of ALCu

P
towards higher OWL layers, e.g., SHIF(D) and

SHOIN (D), deserve more investigation w.r.t. corresponding DL tableaux-based
algorithms that integrate general rules.
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Abstract. Modern semantic technology is one of the necessary supports for the
infrastructure of next generation information systems. In particular, large interna-
tional organizations, which usually have branches around the globe, need to man-
age web-based, complex, dynamically changing and geographically distributed
information. Formalisms for modular ontologies offer the necessary mechanism
that is needed to handle ontology-based distributed information systems in the
aforementioned scenario. In this paper, we investigate state-of-the-art technolo-
gies in the area of modular ontologies and corresponding logical formalisms. We
compare different formalisms for modular ontologies in their ability to support
networked, dynamic and distributed ontologies, as well as the reasoning capabil-
ity over these ontologies. The comparison results show the strength and limita-
tion of existing formalisms against the needs of modular ontologies in the given
setting, and possible future extensions to overcome those limitations.

Keywords: Distributed information systems, modular ontologies, semantic tech-
nology, requirements.

1 Introduction

Managing large-scale information systems in a distributed way is usually a challenging
task in which each system may pertain only a subset of the information in question
and the dynamically-changing information in local systems is difficult to detect or to
control. A typical application scenario is that large international organizations, which
may have branches around the globe and maintain multiple, distributed, large infor-
mation systems for each of their branch. With the popularity of semantic technologies
deployed in information system engineering, knowledge, often being represented as on-
tologies, is typically maintained by local branches of the organization in a collaborative
way. While those ontologies are usually focused on the local information of particular
local branches and are physically distributed around the world, they are also very likely
to be linked together to offer the necessary global usage of information.

As a motivating example, we consider one of the case studies of the NeOn project1

[8] – a fishery case study in the Food and Agriculture Organization (FAO) of the United

1 http://www.neon-project.org

M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 178–193, 2007.
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Nations (UN). This case study aims to improve the interoperability of FAO informa-
tion systems in the fishery domain, integrating and using networked ontologies [14], by
creating and maintaining distributed ontologies (and ontology mappings) in the fishery
domain. In particular, FAO has large sets of fishery ontology data with the following
features and requirements:

1. Networking. The ontology data sets in FAO are intensively interconnected by dif-
ferent subjects, languages, countries and other geopolitical aspects in a secure net-
worked environment with clear boundary for information hiding and encapsulation.

2. Dynamics. In FAO, the ontologies are large, interconnected and changing over time.
Therefore, an approach that can handle ontology data in a dynamic way with change
monitoring and propagation is required.

3. Distribution. Because FAO has many branches around the world, the ontologies
in FAO are distributed rather than centralized, which arises challenges in loose
coupling and autonomous management.

4. Reasoning. FAO ontologies, which usually consist of both terminologies and as-
sertional data in FAO fishery case studyies, need reasoning support with high effi-
ciency and good scalability.

We argue that such a scenario is common to typical large-scale distributed informa-
tion systems that are deployed using semantic applications, especially for knowledge
management in big international organizations. Hence, there have been considerable
recent efforts to provide solutions for such a scenario. For example, the recent W3C
recommendation, OWL Web Ontology Language [23] can represent and connect on-
tologies on the Web in a machine readable format, which is one of the central concerns
of the Semantic Web [5,30]. Borgida and colleagues proposes Distributed Description
Logics (DDL) to correspond the federated information sources [6] and a DDL imple-
mentation DRAGO [28]. However, these current technologies often have difficulties in
handling ontological data against the requirements mentioned above:
1. Traditional ontology formalisms, e.g. Frame System or Description Logics, are de-

signed for centralized ontologies rather than decentralized ones. Furthermore, most
ontology management systems do not support processing large instance data repre-
sented in the form of ontologies in the decentralized scenario.

2. In a scenario with interconnected ontology modules, ideally, when one ontology
module is updated, the depending ontology modules should be updated as well to
reflect the changes. However, few current technologies can support such dynamic
automatic updating.

3. What is still missing is a principled approach to support distributed ontologies,
where the individual ontology modules are physically distributed, loosely coupled
and autonomously managed.

4. Some reasoners are able to support either local TBox reasoning (e.g. FaCT++ [35])
or distributed TBox reasoning (e.g. DRAGO [28] and Pellet [31]), while others
are good at ABox reasoning (e.g. KAON2 [24]). However, handling both TBox
and ABox in a distributed, efficient and scalable way for modular ontologies is a
challenging task for reasoners.

To manage information generated and maintained in such distributed settings, we
need knowledge representation formalisms and tools to meet the following challenge:
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How to properly manage multiple networked, distributed, dynamic ontologies and
provide corresponding reasoning support? In this paper, we investigate approaches to
represent and exploit such networked ontologies, considering the recent advances in
formalisms for modular ontologies and distributed reasoning techniques.

In the following sections, we firstly introduce some preliminaries of description log-
ics and modular ontologies in Section 2. We analyze requirements of networked on-
tologies and comparison criteria for different formalisms on their language functionality
and expressivity in Section 3. We compare several formalisms for the need of networked
ontologies in the light of the given set of requirements in Section 4 and identify some
critical unsolved problems in modeling and reasoning with networked ontologies and
discuss possible solutions to those problems Section 6. We summarize the paper and
outline future work in Section 7.

2 Preliminaries

Formalisms of modular ontologies studied in this paper mainly aim to handle subsets of
OWL-DL with Description Logics (DLs) as the underlying logical formalism. There-
fore, we first introduce basic preliminaries of DLs to allow a better understanding of
the formalisms introduced in Section 4. Furthermore, we also briefly introduce modular
ontologies and their roles in the distributed information systems.

2.1 Description Logics

Syntax. Given R as a finite set of transitive and inclusion axioms with normal role
names NR, a SHIQ-role is either some R ∈ NR or an inverse role R− for R ∈ NR.
Trans(R) and R � S represent the transitive and inclusion axioms, respectively, where
R and S are roles. A simple role is a SHIQ-role that neither its sub-roles nor itself is
transitive. Let NC be a set of concept names , the set of SHIQ-concepts is the minimal
set such that every concept C ∈ NC is a SHIQ-concept and for C and D are SHIQ-
concepts, R is a role, S a simple role and n a positive integer, then (¬C), (C � D),
(C � D), (∃R.C), (∀R.C), (� nSC) and (� nSC) are also SHIQ-concepts.

Therefore we have a knowledge base KB that is a triple (R, T ,A) where R is the
RBox, TBox T is a finite set of axioms representing the concept inclusions with the

Table 1. Semantics of SHIQ−KB

Interpretation of Concepts

(¬C)I = ΔI\CI , (C � D)I = CI ∩ DI , (C � D)I = CI ∪ DI

(∃R.C)I = {x ∈ ΔI |RI(x, C) �= ∅}, (∀R.C)I = {x ∈ ΔI |RI(x,¬C) = ∅}
(� nS.C)I = {x ∈ ΔI |NRI(x, C) � n}, (� nS.C)I = {x ∈ ΔI |NRI(x,C) � n}
Interpretation of Axioms

(C � D)I : CI ⊆ DI , (R � S)I : RI ⊆ SI

(Trans(R))I: {∀x, y, z ∈ ΔI |RI(x, y) ∩ RI(y, z) → RI(x, z)}
NR is the number restriction of a set R and RI(x, C) is defined as:
{y|〈x, y〉 ∈ RI and y ∈ CI}.
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form C � D, ABox A is a finite set of axioms with the form C(x), R(x, y), and x = y
(or x �= y) that consists (un)equality-relations.

Semantics. The semantics of KB is given by the interpretation I = (ΔI ,I
′
) that

consists of a non-empty set ΔI (the domain of I) and the function I
′

in the Table 1
[17]. The satisfiability checking of KB in expressive DLs is performed by reducing
the subsumption, and the reasoning over TBox and role hierarchy can be reduced to
reasoning over only role hierarchy [16]. The interpretation I is the model of R and T
if for each R � S ∈ R, RI ⊆ SI and for each C � D ∈ T , CI ⊆ DI .

2.2 Modular Ontologies

Syntax. A modular ontology usually contains a set of component theories (modules)
from same or different languages, and a set of semantic connections between those
component. Formally, an abstract modular ontology Σ = 〈{Li}, {Mij}i�=j〉 contains a
set of modules Li, each is a TBox of a subset of SHIQ, and a set of semantic connec-
tions Mij between Li and Lj for some i �= j.

Two broad types of modular ontology languages have been studied [3]. The link-
ing or mapping approach requires signatures of modules to be disjoint, i.e. Sig(Li) ∩
Sig(Lj) = Ø, for i �= j; Mij serves as the mapping between Li and Lj . On the
other hand, the importing approach allows modules to share terms. Formally, for a
module Li, a subset of its symbols Loc(Li) ⊆ Sig(Li) is called Li’s local signature;
the set of terms in Ext(Li) = Sig(Li)\Loc(Li) is called Li’s external signature; a
term t ∈ Loc(Li) ∩ Ext(Lj) (i �= j) is said an imported term of j. Hence, seman-
tic connection Mij in the importing approach only allows name reuse in the form of

Li
t−→ Lj .

Semantics. An interpretation I = 〈{Ii}, {rij}i�=j〉 of abstract modular ontology
Σ = 〈{Li}, {Mij}i�=j〉, where Ii = 〈ΔIi , (.)Ii〉 is the local interpretation of module
Li; domain relation rij ⊆ ΔIi × ΔIj is the interpretation for the semantic connection
from Li to Lj . It should be noted that two domains ΔIi and ΔIj are not necessarily
the same or are disjoint. A domain relation rij represents the capability of the module
j to map the objects of ΔIi into ΔIj . Some formalisms may allow multiple domain
relations under names {R1, ...Rm} such that rij =

⋃
n rRn

ij .
Different modular ontology languages provide different solutions to model compo-

nent theories and semantic connections between them. In section 4, we will further
introduce several representative families of modular ontologies.

3 Criteria for Evaluation

In this section, we discuss two categories of criteria for evaluating modular ontology
formalisms: functionality criteria is driven by the requirements of applications of large-
scale distributed information system, while the expressivity criteria is driven by the
requirements on language modelling ability.



182 Y. Wang et al.

3.1 Functionality

We measure language functionalities supported by different formalisms in four dimen-
sions as we introduced in Section 1.

Networking

– Encapsulation. In the networked ontology setting, each ontology module may rep-
resent knowledge in a subset of the domain in question. Those modules are usually
autonomously created and maintained, while they may also be inter-connected to
form a larger knowledge base. In other words, such ontology modules can encap-
sulate knowledge sub-domains, where the local domain is a subset of the global
domain. Syntactically, instead of having a single logic theory L, we may have a set
of local theories {Li} such that axioms will have clearly defined provenance from
one of the local theory.

– Reusability (Inheritance). Ontologies are very likely to be reused. Thus, formalisms
for modular ontologies should also support managing different modules and identi-
fying module dependencies. Formally, if module L1 reuses L2 and if a subsumption
C � D is entailed by L2, such that for every model I2 of L2, CI2 ⊆ DI2 , then we
will have for every model I1 of L1, CI1 ⊆ DI1 .

In particular, ontology modules should be also transitively reusable, that is, if a
module X uses module Y , and module Y uses module Z , then apparently, module
X should use module Z .

– Authorization. Many applications call for controllable access of knowledge due to
copyright, privacy or safety concerns. Formalisms for modular ontologies may also
support authorization features to ensure authorized creation and usage of ontol-
ogy modules. For example, to enable multi-user access to ontologies, the language
supported by the formalism may secure the session by explicitly defined rights for
accessing or editing of each module. Formally, for certain agent, an ontology mod-
ule Li with authorization may be divided into a hidden part LH

i and visible part
LV

i , such that there is a reasoner for Li such that if axiom α ∈ LH
i , then no any

combination of LV
i and previous answers from the same reasoner will entail α.

Dynamics

– Networked Ontology Dynamics. The dynamic role of networked ontologies reflects
the importance of monitoring and propagating ontology changes and updating.
Such a requirement is closely related to ontology evolution, while it is more fo-
cused on the identification and updating of module changes rather than managing
ontology versions. Assume concept C is in ontology module L1 and concept D is
in module L2, then we have can axioms to represent that C corresponds to D by
certain intermodule correspondences. The dynamics of network ontology requires
the changes on C to C

′
should be detectable by L2 in order to preserve the global

(L1 � L2) consistency or satisfiability by changing D change to D
′

if necessary
[32].
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Distribution

– Loose Coupling. Modules in a modular ontology may only be loosely coupled,
such that interconnections between different modules are well controlled, conflicts
can be easily detected and eliminated, and communication cost in the reasoning
process is minimized. On the other hand, two modules are not necessarily fully
disjoint from each other. Syntactically, it can be measured by the “connectedness”
notion [25], such that the size of axioms in mappings {Mij} or in component logics
{Li} that contains terms from different components are minimized.

– Self-Containment. On the other hand, ontology modules may also be semantically
loosely coupled such that a module could be self-contained in the sense that rea-
soning tasks may be locally preformed using only local knowledge when there is
no required access for knowledge in other modules. It may be measured by the sup-
porting to the “conservative extension”[22,11] property of ontology module, such
that for any module Li and Lj , for a query α in the language of Li, Li ∪Lj � α iff
Li � α, i.e. the combination of logic modules will not change the internal knowl-
edge structure of any module.

Reasoning

– Complexity and Scalability. Processing modular ontologies is typically more chal-
lenging than reasoning with a single ontology. Thus, a desirable formalism for mod-
ular ontologies should provide reasoning procedures that are efficient and scalable
to large terminologies and instance sets. For example, the formalism should be able
to scale when processing large number of modular ontology that are distributed.

– Reasoning Support for Terminological and Assertional Knowledge. A desirable
feature for a modular ontology formalism is to supports both T-Box reasoning
and ABox querying. Support for modular ABoxes is particularly important since
our motivation applications involve knowledge that is represented in large and dis-
tributed instance sets.

3.2 Expressivity

Expressivity criteria of modular ontology formalisms include the following:

– Module Correspondence. As we mentioned in the functionality criteria, different
modules may be partially coupled in their languages or interpretations. For exam-
ple, an ontology module about academic department may borrow (inherit) some
knowledge from another university ontology, which may be stated as:

DepartmentModule isInheritedFrom UniversityModule

.– Concept Subsumption. Having subsumption relations between concepts in different
modules is one of the most needed features in modular ontologies. For example,
MasterStudent in a university ontology module may be a subclass of Student in
the people ontology module.

– Concept Interconnection. A concept in a module may be connected to concepts in
foreign modules by roles. For example, PhDStudent in the university module may
be related to the City concept from a geographic ontology module by lives role
connection.
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– Role Subsumption. It is used to allow the subsumption relationship between the
local and the foreign role.

– Role Transitivity. A foreign transitive role may be used in a module, e.g., the module
A reuses the property biggerThan which is defined in the module B.

– Role Inversion. It is required to specify inverse relations between local and foreign
roles.

– Individual Correspondence. It is required to specify that some individuals in one
module are related to individuals in other modules.

Given the above set of criteria on language functionality and expressivity, we will
analyze candidate formalisms with details in the next section. Apparently, not all appli-
cations need all of the criteria above, which are mainly driven by the FAO fishery case
study setting, nevertheless we still argue that this setting can be generalized and applied
to many real world distributed information systems.

4 Candidates of Formalisms for Modular Ontologies

4.1 Modularization with OWL Import

The OWL ontology language provides limited support for modularizing ontologies: an
ontology document – identified via its ontology URI – can be imported by another
document using the owl:imports statement. The semantics of this import statement is
that all definitions of the imported ontology (module) are logical part of the importing
ontology (module) as if they were defined in the importing ontology directly. Thus, they
are forced to share a classical DL semantics, i.e., a global model semantics. It should be
noted that such an importing is directed: only the importing ontology is affected by the
import statement; it is also transitive: if ontology A imports ontology B, and ontology
B imports ontology C, then ontology A also imports ontology C. Cyclic imports are
also allowed (e.g. A owl:imports B, B owl:imports A).

Terms of the importing and imported ontology module can be related to each other
using legal primitives available in OWL. Typically these relation definitions are part
of the importing ontology module.The owl:imports functionality provides no partial
importing of modules, thus it is up to the user to decide the proper level of granularity
of ontology modules.

4.2 Distributed Description Logics

Distributed Description Logics (DDL) [6] adopt a linking mechanism. In DDL, the
distributed knowledge base (D-KB), D = 〈{Li}i∈I , B〉 consists a set of local knowledge
bases {Li}i∈j and bridge rules B = {Bij}{i�=j}∈I that represent the correspondences
between them. The semantic linkings between modules Li and Lj are represented by
cross-module Bridge Rules “INTO” and “ONTO” axioms in one of the following forms:

– INTO: i : C
�−→ j : D, with semantics: rij(CIi) ⊆ DIj

– ONTO: i : C
�−→ j : D,with semantics: rij(CIi) ⊇ DIj
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where Ii and Ij are local interpretations of Li and Lj , respectively, C, D are concepts,
rij (called domain relation) is a relation that represents an interpretation of Bij .

DDL bridge rules between concepts covers one of the most important scenarios in
modular ontologies. They are intended to simulate concept inclusion with a special
type of roles. However, a bridge rule cannot be read as concept subsumption, such as
i : A � j : B. Instead, it must be read as a classic DL axiom in the following way [6]:

– i : A
�−→ j : B ⇒ (i : A) � ∀Rij .(j : B)

– i : A
�−→ j : B ⇒ (j : B) � ∃R−ij .(i : A)

where Rij is a new role representing correspondences Bij between Li and Lj .
Such relations have semantic differences with respect to concept inclusion (inter-

preted in classic DLs as subset relations between concept interpretations, e.g. AIi ⊆
BIj ) in several ways. For example, empty domain relation rij is allowed in the origi-
nal DDL proposal [6], while GCIs between satisfiable concepts enforce restrictions on
non-empty interpretations. Arbitrary domain relations may not preserve concept unsat-
isfiability among different modules which may result in some reasoning difficulties [3].
Furthermore, while subset relations (between concept interpretations) is transitive,
DDL domain relations are not transitive, therefore bridge rules cannot be transitively
reused by multiple modules. Those problems are recently recognized in several papers
[2,3,34,27] and it is proposed that arbitrary domain relations should be avoided. For
example, domain relations should be one-to-one [27,3] and non-empty [34].

The requirements of practical applications raised in the previous section are not fully
satisfied by the expressivity of DDL. For example, inter-module role correspondences,
which are important to present relations between concepts in different modules, are not
supported in DDL: assume an concept PhDStudent is included in one ontology module
and another concept Thesis is include in another ontology module, we cannot define
PhDStudent � ∃writes.Thesis in DDL, where writes is a inter-module role.

4.3 Integrity and Change of Modular Terminologies in DDL

Influenced by DDL semantics, Stuckenschmidt and Klein [32] adopt a view-based in-
formation integration approach to express relationships between ontology modules. In
particular, in this approach ontology modules are connected by correspondences be-
tween conjunctive queries. This way of connecting modules provides a tradeoff between
the simplicity of one-to-one mappings between concept names and the unrestricted use
of logical languages to connect different modules.

Stuckenschmidt and Klein [32] defines an ontology module – abstracted from a par-
ticular ontology language – as a triple M = (C,R,O), where C is a set of concept
definitions, R is a set of relation definitions and O is a set of object definitions. A con-
junctive query Q over an ontology module M = (C,R,O) is defined as an expression
of the form q1 ∧ ... ∧ qm, where qi is a query term of the form C(x), R(x, y) or x = y,
C and R are concept and role names, respectively, and x and y are either variable or
object names.

In a modular terminology it is possible to use conjunctive queries to define concepts
in one module in terms of a query over another module. For this purpose, the set of
concept definitions C is divided into two disjoint sets of internally and externally defined
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concepts CI and CE , respectively, with C = CI ∪ CE , CI ∩ CE = ∅. An internal concept
definition is specified using regular description logics based concept expressions with
the form of C � D or C ≡ D, where C and D are atomic and complex concepts,
respectively. An external concept definition is an axiom of the form C ≡ M : Q,
where M is a module and Q is a conjunctive query over M . It is assumed that such
queries can be later reduced to complex concept descriptions using the query-rollup
techniques from [19] in order to be able to rely on standard reasoning techniques. A
modular ontology is then simply defined as a set of modules that are connected by
external concept definitions. The semantics of these modules is defined using the notion
of a distributed interpretation introduced in Section 4.2.

Although the definition of a module, in its abstract form shown above, may allow
arbitrary concept, relation and object definitions, only concept definitions is studied in
[32]. This is due to the focus of the approach to improve terminological reasoning with
modular ontologies by pre-compiling implied subsumption relations. In that sense it
can be seen as a restricted form of DDLs that enables improved efficiency for special
TBox reasoning tasks.

4.4 E-Connection

While DDL allows only one type of domain relations, the E-connection approach al-
lows multiple “connections” between two modules, such as liveIn and bornIn between
2 : Fishkind and 1 : Region, where “2” and “1” stand for different modules, respec-
tively. E-connections between DLs [20,13] divide roles into disjoint sets of local roles
(connecting concepts in one module) and links (connecting inter-module concepts).
Formally, given ontology modules {Li}, a (one-way binary) link E ∈ Eij , where
Eij(i �= j) is the set of all links from the module i to the module j, can be used to
construct a concept in module i, with the syntax and semantics specified as follows:

– ∃E.(j : C) : {x ∈ Δi|∃y ∈ Δj , (x, y) ∈ EI , y ∈ CI}
– ∀E.(j : C) : {x ∈ Δi|∀y ∈ Δj , (x, y) ∈ EI → y ∈ CI}}
– ≤ nE.(j : C) : {x ∈ Δi|N({y ∈ Δj |(x, y) ∈ EI , y ∈ CI}) ≤ n}
– ≥ nE.(j : C) : {x ∈ Δi|N({y ∈ Δj |(x, y) ∈ EI , y ∈ CI}) ≥ n}

where C is a concept in Lj , with interpretation CI = CIj ; EI ⊆ ΔIi×ΔIj is the inter-
pretation of a E-connection E; and N is the cardinality of set; I = 〈{Ii}, {EI}E∈Eij〉
is an interpretation of the E-connected ontology, Ii is the local interpretation of Li.

Existing E-connection proposals [20,13] has required both local languages and local
domains of ontology modules to be disjoint, which lead to several difficulties:

– The requirement for terminology disjointness and local domain disjointness in E-
connections enforce strong restrictions in some applications. For example,
E-connections is not able to refine role definitions in an existing module with a
new module, e.g. i : hatchedIn is less general than j : bornIn, where j : bornIn
is a role in an existing module and i : hatchedIn is a new role extended from
j : bornIn.

– To enforce local domain disjointness, a concept cannot be declared as subclass of
another concept in a foreign module thereby ruling out the possibility of asserting
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inter-module subsumption and the general support for transitive usability; a prop-
erty cannot be declared as sub-relation of a foreign property; neither foreign classes
nor foreign properties can be instantiated; cross-module concept conjunction or dis-
junction are also illegal.

– E-connected ontologies have difficulties to be used with OWL importing mecha-
nism, since importing may actually “decouple” the combination and result in in-
consistency [10].

– E-connected ontologies do not allow a same term be used as both a link name and a
local role name, nor role inclusions between links and roles, while such features are
widely required in practice [10]. The“punning” approach [10], where a same name
can have different interpretations, is rather as a syntactical sugar than a semantic
solution to such problems.

4.5 Package-Based Description Logics

Package-based Description Logics (P-DL) [4], uses importing relations to connect local
modules. In contrast to OWL, which forces the model of an imported ontology to be
completely embedded in a global model, the P-DL importing relation is partial in that
only commonly shared terms are interpreted in the overlapping part of local models.
The semantics of P-DL is given as the follows: the image domain relation between
local interpretations Ii and Ij (of package Pi and Pj ) is rij ⊆ ΔIi × ΔIj . P-DL
domain relation is:

– one-to-one: for any x ∈ Δi, there is at most one y ∈ Δj , such that (x, y) ∈ rij ,
and vice versa.

– compositionally consistent: rij = rik ◦ rjk , where ◦ denotes function composition.
In other words, domain relations in P-DL is transitive.

P-DL provide contextualized semantics such that different packages have contex-
tualized top concepts �i (for all i) instead of a universal top �; for any concept C,
rij(CIi) = CIj . Hence, axiom in a P-DL package Pi will only be interpreted in its
domain ΔIi , and may be influence only the overlapped domain rij(ΔIi) ∩ ΔIj of
another package. Therefore, knowledge in P-DL can be reused as well as keeping its
contextuality.

P-DL also supports selective knowledge sharing by associating ontology terms and
axioms with “scope limitation modifiers (SLM)”. A SLM controls the visibility of the
corresponding term or axiom to entities on the web, in particular, to other packages.
The scope limitation modifier of a term or an axiom tK in package K is a boolean
function f(p, tK), where p is a URI of an entity, the entity identified by p can access tK
iff f(p, tK) = true. For example, some representative SLMs can be defined as follows:

– ∀p, public(p, t) := true, means t is accessible everywhere.
– ∀p, private(p, t) := (t ∈ p), means t is visible only to its home package.

P-DL semantics ensure that distributed reasoning with a modular ontology will yield
the same conclusion as that obtained by a classical reasoning process applied to an in-
tegration of the respective ontology modules [3]. Reported result in [1] only supports
reasoning in P-DL as extensions of ALC TBox. Reasoning algorithms for more expres-
sive P-DL TBox and ABox reasoning still need to be investigated.
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5 Evaluation

In this section, we first evaluate existing modular ontology formalisms, then we explain
the results based on the evaluation criteria given in Section 3.

Table 2 evaluates different formalisms against the functionality requirements, and
Table 3 compares the expressivity of the these formalisms. In this section, the integrity
and change aspects related to modular ontologies investigated in [32] will be denoted
as “DDL-IC”, since it follows the semantics of DDL.

– Encapsulation. According to our criteria, All formalisms listed above support
knowledge encapsulation at different level. OWL- DL provides a basic owl:import
primitive to import foreign ontologies without formal encapsulated modules, hence
OWL-DL partially supports this functionality; DDL, DDL-IC, E-connection and
P-DL allow a large knowledge base to be represented by a set of ontology mod-
ules each capturing a subset of the domain of interest, thus provide the support for
knowledge encapsulation.

– Reusability. OWL-DL ontologies has only limited reusability, because it is difficult
for users to partially reuse ontologies designed by others. DDL, DDL-IC and P-DL
establish good reusability via well-defined encapsulation and their semantics also
satisfy with our criteria. The reusability of E-connection is marked with a “*” sym-
bol because the experiment in [26] shows for some knowledge bases, E-connection
is not able to generate reusable ontology modules. The lack of support for inter-
module concept inclusion presents restriction in reusing E-Connection modules.
By combining the scope limitation and importing mechanism provided by P-DL,
ontology modules may be reused through selected “interface” which is similar to
that of code reusing in software engineering (the “+” symbol in the Table 2 means
this additional feature).

– Authorization. Bao et.al. [4] show that it is possible to integrate authorization in-
formation with modular ontologies to guarantee the secure access, editing and rea-
soning with ontology modules. To the best of our knowledge, there is no other
reported formalisms support this functionality with semantics described in the
criteria.

Table 2. Comparison on language functionality. “T” means this formalism supports terminolog-
ical (TBox) reasoning and “A” stands for the assertional (ABox) reasoning support. We refer the
reader to the corresponding analysis for explanations of the “+” and “*” symbols.

OWL-DL DDL DDL-IC P-DL E -Connection

Encapsulation Partial Yes Yes Yes Yes
Reusability Fair Good Good Good+ Good∗

Authorization No No No Partial No
Ontology Dynamics Yes No Yes Unclear Unclear
Loose Coupling No Yes Yes Yes Yes
Self-Containment Partial Yes Yes Partial Yes
Scalability Low Fair Fair Fair Low
Reasoning Support T and A T and Partial A T T T
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– Ontology Dynamics. There have been rich study with respect to the dynamics
of OWL-DL [15], and DDL- IC developed a mechanism to monitor the changes
of modular ontologies [32], but it is not clear that other formalisms support this
functionality.

– Loose Coupling. It is supported at different levels by different formalisms except
for OWL-DL. Stuckenschmidt and colleagues explicitly argued its importance and
deployment in DDL-IC [32].

– Self-containment. Due to the lack of localized semantics, OWL-DL does not fully
support knowledge self-containment. In particular, reasoning in an OWL ontol-
ogy requires the integration of all directly or indirectly imported ontologies of the
given ontology. DDL-IC [32] introduces the self-containment functionality based
on traditional DDL, while E-connections requires strict separation of knowledge
terminologies of ontology modules as well as their local interpretation domains
[10]. P-DL can maintain the autonomy of individual modules; however, since P-
DL adopts a partial semantic importing approach, reasoning in a P-DL ontology
may also depend on its imported ontologies. According to our arguments in Sec-
tion 3, DDL, DDL-IC and E-Connection provide full support to this functionality
by preserving the local knowledge structure while combining with other foreign
modules.

– Scalability. The worst time complexity of the four formalisms studied in this paper
are all exponential [18,1,10,28] for standard reasoning tasks, thereby we mainly
discuss the scalability of these formalisms in the distributed environment. DDL,
DDL-IC and P-DL support reasoning in a distributed setting in which ontology
modules can be kept strictly separate, thus the integration of component ontology
modules is avoided to obtain higher scalability in handling large ontologies. On the
other hand, the current reasoning strategy for E-connection, which is implemented
in the reasoner Pellet [31], adopts the “coloring” but not physical separation of
tableaux of ontology modules, hence requires implicit ontology integration to a
single location, which may deteriorate its scalability.

– Reasoning Support. Reasoning support for OWL-DL has been successfully imple-
mented in several highly optimized reasoners, such as FaCT++[35], Pellet[31] and
KAON2; in particular KAON2 is optimized for reasoning with large ABoxes. DDL
recently supported large ABox reasoning in a limited form [29]. Other formalisms
have reported the support for TBoxes [12] only.

In the following, we explain the expressivity comparison of the formalisms:

– DDL-IC and P-DL define modules that may be related to other modules before the
integration, while other languages do not define correspondences between modules.

– All formalisms but DDL support concept interconnections across modules. OWL-
DL allows arbitrarily complex relations between concepts in different ontologies
(i.e. semantic connections have the same expressivity as that of the local ontology
language in each module). On the other hand, other formalism restrict the expres-
sivity of concept connections to obtain both localized semantics and decidability.
DDL, DDL-IC support concept subsumptions. E- connection does not allow cross-
module subsumption relationships, but allows two concepts being connected by
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Table 3. Comparison of expressivity

OWL-DL DDL DDL-IC P-DL E -Connection

Module Correspondence. No No Partial Partial No
Concept Subsumption. Yes Yes Yes Yes No
Concept Interconnection. Yes Yes Yes Yes Yes
Role Subsumption. Yes Yes Yes No No
Role Transitivity. Yes No Yes No Partial
Role Inversion. Yes No Yes No No
Individual Correspondence. Yes Yes Yes No No

links. P-DL supports both inter-module concept subsumptions and inter-module
concept connections by roles.

– Role subsumption is provided by DDL [9], DDL-IC and OWL-DL. E-connection
does not allow a same name being shared by links and roles, and it does not allow
role inclusions between modules. Role transitivity and inversion are not supported
by DDL, DDL-IC. Reported P-DL formalism [2] does not allow role name import-
ing hence does not support inter-module role subsumption, inversion and the reuse
of transitive roles.

– The predicate owl:sameIndividualAs in OWL-DL supports simple individual corre-
spondence by predicate . Among other formalisms, only DDL has investigated in-
dividual correspondence between ontology modules [29]. E-connections does not
allow cross- module individual correspondence since local domains of ontology
modules are strictly disjoint. Such a feature is also missing in reported P-DL for-
malism (which only allows concept importing among ontology modules). DDL-
IC allows a view with no variable being defined, which may be used to establish
individual correspondence between ontology modules.

6 Discussion

The survey in the previous sections shows that existing formalisms may provide solu-
tions with strength and weakness on different aspects to meet the requirement from our
motivated applications, i.e. the FAO fishery case study in NeOn project.

First of all, a commonly accepted definition of “What is a good ontology module?” is
still missing. It has been argued that different application scenarios may require differ-
ent set of modularity requirements [21]. Secondly, an efficient and scalable reasoning
approach for large ABox data is currently not well provided by existing formalisms.
Thirdly, most of the existing approaches can not support trust and authorization require-
ments. Finally, managing the dynamics of ontologies is only supported by the approach
proposed by Stuckenschmidt and colleagues [33], which is still missing in other modu-
lar ontology formalisms.

Existing formalisms are also limited in expressivity. Most formalisms provide means
to deal with concepts in terminology knowledge. However, mechanisms to handling
other ontological entities, such as roles and individuals correspondences, is not supported
by E-connection or P-DL in their current forms. On the other hand, interconnections and
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relationships between modules, which is needed by many applications using modular
ontologies, is currently not well-defined and lacks implementations.

Existing formalisms require further extensions, such as conservative extension [7],
in order to be served as successful formalisms for modular ontologies as discussed in
Section 3. Practical reasoning support for expressive formalisms for modular ontologies
are also to be investigated.

7 Conclusions and Future Work

In this paper, we studied different formalisms for modular ontologies against the re-
quirements within the context where deploys modern semantic technologies as a novel
approach for large-scale distributed information system engineering. We presented a
set of formal criteria based on the requirements of a typical networked ontology ap-
plications. We then compared several formalisms for modular ontologies against these
requirements.

The comparison result suggests that no existing approach can satisfactorily meet all
the requirements of our networked ontology applications. Several possible extension of
existing formalisms were identified and discussed.

Work in progress includes the development of a networked ontology based formalism
that meets the requirements raised in the Section 3, and the efficient and scalable reason-
ing support for such a formalism that is able to handle both large distributed ontology
terminologies and instance data sets that are contained in the large-scale distributed
information systems.
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Abstract. Description Logics (DLs) have been widely used in the last years as
formal language for specifying ontologies over the web. Due to the dynamic na-
ture of this setting, it may frequently happen that data retrieved from the web
contradict the intensional knowledge provided by the ontology through which
they are collected, which therefore may result inconsistent. In this paper, we an-
alyze the problem of consistent query answering over DL ontologies, i.e., the
problem of providing meaningful answers to queries posed over inconsistent on-
tologies. We provide inconsistency tolerant semantics for DLs, and study the
computational complexity of consistent query answering over ontologies spec-
ified in DL-Lite, a family of DLs specifically tailored to deal with large amounts
of data. We show that the above problem is coNP-complete w.r.t. data complexity,
i.e., the complexity measured w.r.t. the size of the data only. Towards identifica-
tion of tractable cases of consistent query answering over DL-Lite ontologies, we
then study the problem of consistent instance checking, i.e., the instance check-
ing problem considered under our inconsistency-tolerant semantics. We provide
an algorithm for it which runs in time polynomial in the size of the data, thus
showing that the problem is in PTIME w.r.t. data complexity.

1 Introduction

In several Information and Communication Technology areas, ranging from the Se-
mantic Web (SW) [23], to Enterprise Application Integration, or Data Integration [26],
ontologies are nowadays considered as the ideal formal tool to provide a shared concep-
tualization of a particular domain of interest. Description Logics (DLs) [5] are logics
that represent the domain in terms of concepts (sets of objects) and roles (binary re-
lations between concepts), and that allow for the definition of knowledge bases (KBs)
composed by a terminological component (TBox), specifying the intensional knowl-
edge, and an assertional component (ABox), specifying the extensional knowledge. DLs
have been widely used in the last years as formal language for specifying ontologies
over the web, for their ability of combining modelling power and decidability of rea-
soning [24]. Recently, besides expressive DLs, which suffer from inherently worst-case
exponential time behavior of reasoning [8], also DLs that allow for tractable reason-
ing have been proposed for ontology modelling [4,11]. The study on tractable DLs
is motivated by the need of managing large amounts of data (e.g., from thousands to
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millions of instances) under the control of ontology-based systems, like data reposito-
ries over the web, in which data constitute the instances of the concepts in the ontology.
Furthermore, in the SW community, a growing interest is being recently devoted to
data integration [30], which in the SW context mainly means accessing, collecting, and
exchanging data distributed over the web through the use of ontologies.

Due to the dynamic nature of the setting described above, it may frequently hap-
pen that data contradict the intensional knowledge provided by the ontology through
which they are accessed, especially in those cases in which the ontology provides a
conceptual view of a number of autonomous information sources, heterogeneous and
widely distributed. In the above situation, ontologies may result inconsistent, and rea-
soning over them, according to classical first-order semantics of DL ontologies, may
become meaningless, since whatever conclusion may be derived from an inconsistent
theory. Then, besides handling inconsistency at the terminological/schema level, which
has been a subject recently investigated for ontology-based applications [28,25,22], the
need arises in this context to deal with inconsistency at the instance/data level. In the
present paper we study this problem.

The approach commonly adopted to solve data inconsistency is through data clean-
ing [9]. This approach is procedural, and is based on domain-specific transformation
mechanisms applied to the data. One of its problems is incomplete information on how
certain conflicts should be resolved. This typically happens in systems which are not
tailored for business logic support at the enterprise level, like systems for information
integration on-demand over the web. In the last years, an alternative declarative ap-
proach has been investigated in the area of consistent query answering [3,17,7,10,20].
Such an approach relies on the notion of repair for a database instance that may vio-
late integrity constraints specified over its schema. Roughly speaking, a repair is a new
database instance which satisfies the constraints in the schema and minimally differs
from the original one. In general multiple repairs are possible. Then, consistent query
answering amounts to compute those answers to a user query that are in the evaluation
of the query over each repair. It is well-known [10,15,21] that consistent query answer-
ing of conjunctive queries expressed over database schemas with (even simple forms
of) integrity constraints is a coNP-complete problem in data complexity, i.e., the com-
plexity measured only with respect to the size of the database instance [32]. Motivated
by the high computational complexity of the problem, some works have recently faced
the problem under the perspective of identifying tractable cases, by limiting both the
form of integrity constraints allowed on the database schema, and the language used for
specifying the queries [20,21,16].

In this paper, we study consistent query answering over DL ontologies. In particular,
we provide a new semantic characterization for DLs, based on the notion of repair. We
focus on a family of DLs called DL-Lite [11,12], which is specifically tailored to deal
with large amounts of data. While the expressive power of the DLs in the DL-Lite fam-
ily is carefully controlled to maintain low the complexity of reasoning, such DLs are
expressive enough to capture the main notions of both ontologies, and conceptual mod-
elling formalisms used in databases and software engineering (i.e., ER and UML class
diagrams). We consider two DLs of the DL-Lite family, called DL-LiteF and DL-LiteR,
which have as distinguish features the ability of specifying functionalities on roles, and



196 D. Lembo and M. Ruzzi

subsumption between roles, respectively. We study consistent query answering for the
class of union of conjunctive queries (UCQs), which is the most expressive class of
queries for which decidability of query answering has been proved in DLs [14,27]. No-
tably, standard query answering of UCQs over DL-LiteF or DL-LiteR, can be solved
by means of evaluation of suitable first-order logic queries over the underlying DL-Lite
ABox considered as a flat relational database [11,12]. This allows for using well estab-
lished Relational Data Base Management System (RDBMS) technology for reasoning
over queries in such DLs. We point out that these DLs are maximal DLs that admit
such a property, in the sense that we lose it as soon as we consider a DL that allows
for constructs provided by both DL-LiteF and DL-LiteR. Notice also that DL-LiteF is
a strict subset of OWL Lite1, a DL version of the W3C OWL Web Ontology Language,
whereas DL-LiteR can be seen as an extension of (the DL-like part of) the ontology
language RDFS2.

The contributions of the present paper can then be summarized as follows.

– We provide an inconsistency-tolerant semantics for DLs, which relies on the notion
of repair of a DL ontology, and allows for meaningful reasoning in the presence of
inconsistency;

– We study computational complexity of consistent query answering for conjunctive
queries expressed over DL-LiteR and DL-LiteF ontologies, and show that such a
problem is coNP-complete w.r.t. data complexity, for both such DLs;

– Towards identification of tractable cases of consistent query answering for DL-Lite,
we study consistent instance checking over DL-LiteR and DL-LiteF ontologies, i.e.,
the instance checking problem under our inconsistency-tolerant semantics. Such a
problem consists in establishing whether a knowledge base entails the fact that a
certain constant (or pair of constants) is an instance of a concept (resp. of a role),
according to our repair semantics. We provide a polynomial time algorithm for
consistent instance checking for both DL-LiteR and DL-LiteF , then showing that
such a problem is in PTIME w.r.t. data complexity, in both cases.

The rest of the paper is organized as follows. In Section 2 we describe the DLs
DL-LiteR and DL-LiteF . In Section 3 we propose our repair semantics and define the
consistent query answering and consistent instance checking problems. In Section 4
and in Section 5 we study computational complexity of consistent query answering
and consistent instance checking over DL-LiteF and DL-LiteR, respectively. Finally, in
Section 6 we discuss some related work and in Section 7, we conclude the paper.

2 The Description Logics DL-LiteF and DL-LiteR

In this section we present the syntax and the semantics of both DL-LiteF and DL-LiteR,
the two DLs of to the DL-Lite family [11,12] that we mainly focus on in this paper.

At the core of both such DLs we have concepts and roles constructed according to
the following syntax

B −→ A | ∃R R −→ P | P− C −→ B | ¬B E −→ R | ¬R

1 http://www.w3.org/TR/owl-features
2 http://www.w3.org/RDF/

http://www.w3.org/TR/owl-features
http://www.w3.org/RDF/
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where A denotes an atomic concept, P an atomic role, and P− the inverse of the atomic
role P . B denotes a basic concept, i.e., a concept that can be either an atomic concept
or a concept of the form ∃R, and R denotes a basic role, i.e., a role that is either an
atomic role or the inverse of an atomic role. Sometimes we write R− with the intended
meaning that R− = P− if R = P , and R− = P , if R = P−. Finally, C denotes a
(general) concept, which can be a basic concept or its negation, whereas E denotes a
(general) role, which can be a basic role or its negation. Sometimes we write ¬C (resp.,
¬E) with the intended meaning that ¬C = ¬B if C = B (resp., ¬E = ¬R if E = R),
and ¬C = B, if C = ¬B (resp., ¬E = R, if E = ¬R).

Let B1 and B2 be basic concepts, and let R1 and R2 be basic roles, we call positive
inclusions (PIs) assertions of the form B1 � B2, and of the form R1 � R2, whereas
we call negative inclusions (NIs) assertions of the form B1 � ¬B2 and R1 � ¬R2.

A DL knowledge base (KB) K is a pair 〈T , A〉 which represents the domain of
interest in terms of two parts, a TBox T , specifying the intensional knowledge, and an
ABox A, specifying extensional knowledge. DL-LiteF and DL-LiteR differ from one
another for the form of the TBoxes that they allow, whereas they admit the same form
of ABoxes. In particular a DL-LiteF TBox is formed by: (i) a finite set of concept
inclusion assertions, i.e., expressions of the form B � C, meaning that all instances
of the basic concept B are also instances of the generic concept C, and (ii) a finite
set of functionality assertions on roles or on their inverses of the form (funct P ) or
(funct P−), respectively, meaning that a relation P (resp. P−) is functional. A DL-
LiteR TBox is formed by: (i) concept inclusion assertions of the form B � C (as
for DL-LiteF ) and (ii) role inclusion assertions of the form R � E meaning that all
instances of the basic role R are also instances of the general role E. DL-LiteR and DL-
LiteF ABoxes are formed by a finite set of membership assertions on atomic concepts
and atomic roles, of the form A(a) and P (a, b), stating respectively that the object
denoted by the constant a is an instance of the atomic concept A and that the pair of
objects denoted by the pair of constants (a, b) is an instance of the role P .

Before proceeding, we point out that DL-LiteF coincides with the DL presented
in [11], in that paper simply called DL-Lite. In fact, other DLs with the same com-
putational behavior of the DL presented in [11], but allowing for the use of different
constructs, have been successively defined [12,13]. Thus, the term DL-Lite actually
refers now to an entire family of DLs, which contains both DL-LiteF and DL-LiteR.
In the following, for simplicity, we sometimes use the term DL-Lite to refer to either
DL-LiteF or DL-LiteR.

The semantics of a DL is given in terms of interpretations, where an interpretation
I = (ΔI , ·I) consists of a non-empty interpretation domain ΔI and an interpretation
function ·I that assigns to each concept C a subset CI of ΔI , and to each role R a
binary relation RI over ΔI . In particular we have:

AI ⊆ ΔI

P I ⊆ ΔI × ΔI

(P−)I = {(o2, o1) | (o1, o2) ∈ P I}

(∃R)I = {o | ∃o′. (o, o′) ∈ RI}
(¬B)I = ΔI \ BI

(¬R)I = ΔI × ΔI \ RI

Furthermore, an interpretation I is a model of a concept inclusion assertion B � C, if
BI ⊆ CI , I is a model of a role inclusion assertion R � E if RI ⊆ EI , and is I is
a model of an assertion (funct P ) if (o, o1) ∈ P I and (o, o2) ∈ P I implies o1 = o2.
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Analogously for (funct P−). To specify the semantics of membership assertions, we
extend the interpretation function to constants, by assigning to each constant a a distinct
object aI ∈ ΔI . Note that this implies that we enforce the unique name assumption on
constants [5]. An interpretation I is a model of a membership assertion A(a), (resp.,
P (a, b)) if aI ∈ AI (resp., (aI , bI) ∈ P I).

Given an (inclusion, functionality, or membership) assertion α, and an interpretation
I, we denote by I |= α the fact that I is a model of α, and also say that α is satisfied by
I. Given a (finite) set of assertions κ, we denote by I |= κ the fact that I is a model of
every assertion in κ. A model of a DL-Lite KB K = 〈T , A〉 is an interpretation I such
that I |= T and I |= A. With a little abuse of notation, we also write I |= K. A KB is
satisfiable if it has at least one model, otherwise it is unsatisfiable.

Example 1. Consider the atomic concepts Cat , Dog , Pet and Person and the roles
hasOwner and feeds . The following TBox T is an example of DL-LiteF TBox:

Dog � Pet ∃hasOwner− � Person
Cat � Pet Cat � ¬Dog
Pet � ∃hasOwner (funct hasOwner).

From the TBox above, we can obtain a DL-LiteR TBox by removing the functionality
assertion (funct hasOwner) and adding the role inclusion assertion

hasOwner � feeds−.

In both TBoxes we say that cats and dogs are pets, every pet has an owner, a cat is not
a dog and the owner of an animal is a person. Moreover in the DL-LiteF TBox we can
say that a pet cannot have more then one owner, whereas in the DL-LiteR TBox we can
say that an owner must feed her/his pet. Finally, we show a simple DL-Lite ABox A:

Person(John), Dog(Bruto), hasOwner(Tom, Leonard).

A union of conjunctive queries (UCQ) q over a DL-Lite KB K is an expression of the
form

q(x) ←
∨

i=1,...,n

∃yi.conj i(x, yi), (1)

where each conj i(x, yi) is a conjunction of atoms and equalities, with free variables x
and yi. Variables in x are called distinguished, and the size of x is called the arity of q.
The right-hand side of the Formula (1) is called the body of q. Atoms in each conj i are
of the form A(z) or P (z1, z2), where A and P are respectively an atomic concept and an
atomic role of K, and z, z1, z2 are either constants in K or variables. A Boolean UCQ is
a query with arity 0, written simply as a sentence of the form

∨
i=1,...,n ∃yi.conj i(yi).

A UCQ with a single conjunction of atoms, i.e., with n = 1 in the Formula (1), is called
conjunctive query (CQ).

Let q be a Boolean UCQ over a DL-Lite KB K. We say that q is entailed by K, and
write K |= q, if, for every model M of K, M |= q, where |= is the standard evaluation
of first-order sentences in an interpretation. The instance checking problem corresponds
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to entailment of a Boolean ground CQ consisting of a single atom, i.e., a membership
assertion of the form A(a) or P (a, b)3. Let q be a non-Boolean UCQ of arity n over
K, and let t be an n-tuple of constants. We say that t is a certain answer to q in K
if K |= q(t), where q(t) is the sentence obtained form the body of q by replacing its
distinguished variables by constants in t. We denote by Ans(q, K) the set of certain
answers to q in K.

Example 2. Let us consider the DL KB K = 〈T , A〉, where the TBox T and the ABox
A are as defined in Example 1, and the CQ q(x) ← Person(x), posed over K. It is
easy to see that Ans(q, K) = {John, Leonard}, where the certain answer John can
be directly derived from the membership assertions of A, whereas the certain answer
Leonard is implied by the inclusion assertion ∃hasOwner− � Person and by the role
membership assertion hasOwner(Tom, Leonard).

3 Inconsistency-Tolerant Semantics

Let us now consider the case in which a DL knowledge base K is unsatisfiable, i.e., K
does not have any model. As already said in the introduction, reasoning over such a K
is meaningless, since whatever consequence can be deduced from K. In this section,
we provide a new semantics for DL knowledge bases that is inconsistency-tolerant, i.e.,
it allows for “meaningful” reasoning over KBs that are unsatisfiable according to the
classical first-order based semantics, as that considered in Section 2 for DL-Lite. In
particular, our semantics is tolerant to the inconsistency that arises in a DL knowledge
base K = 〈T , A〉 in which a satisfiable TBox T may be contradicted by the extensional
assertions in the ABox A, thus resulting in possibly unsatisfiable KBs. This situation
frequently happens in those systems that provide access to data (possibly integrated
from autonomous sources) through DL ontologies, as in Semantic Web applications.

Formally, let I be an interpretation and let A be an ABox. We denote by Sat(I, A)
the set of membership assertions from A that are satisfied in I, i.e., Sat(I, A) = {α |
α ∈ A and I |= α}.

Definition 1. Let K = 〈T , A〉 be a DL KB and let I be an interpretation. We say that
I is a repair of K if:

1. I is a model for T ;
2. there exists no interpretation I′ such that I ′ is a model for T and Sat(I ′, A) ⊃

Sat(I, A).

In the following, we denote by Rep(K) the set of repairs of K. It is easy to see that when
a KB K is satisfiable, repairs of K coincide with models of K. Also, when the TBox of
K is satisfiable, K has always at least one repair.

Following the lines of research in consistent query answering [3,17,7,10,20], in our
semantics, intensional knowledge specified by the TBox of a knowledge base is consid-
ered stronger than data, i.e., the extensional knowledge provided by the ABox. Indeed,

3 Obviously, we can also have consistent instance checking of an assertion of the form P−(a, b),
by considering the assertion P (b, a).
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a repair R of a knowledge base K = 〈T , A〉 is an interpretation that needs to satisfy T
and that at the same time satisfies a maximal set Am of the membership assertions in
A, i.e., R is a model of the knowledge base 〈T , Am〉.

The notions of entailment of a Boolean query, instance checking and answers to
a query in a DL knowledge base under the repair semantics given in this section are
analogous to the corresponding ones given in Section 2. More precisely, we say that a
Boolean UCQ q is consistently entailed by a DL knowledge base K, and write K |=cons

q if, for every R ∈ Rep(K), R |= q. Then, given a non-Boolean UCQ q of arity n over
K, we say that an n-tuple t of constants is a consistent answer to q in K if K |=cons q(t).
We denote by ConsAns(q, K) the set of consistent answers to q in K. Furthermore, the
consistent instance checking problem corresponds to consistent entailment of a Boolean
ground CQ consisting of a single atom.

We finally notice that, when a DL knowledge base K = 〈T , A〉 is a DL-Lite KB,
K may result unsatisfiable only if the ABox A contradicts the intensional knowledge
of the TBox T . Indeed, it is possible to show that a DL-Lite TBox admits always at
least one model. As a consequence, we have that our inconsistency-tolerant semantics
ensures that every DL-Lite KB has always at least one repair.

Example 3. Let us consider again the DL-LiteF TBox T described in Example 1 and
the following ABox A′:

Person(John), hasOwner(Tom, John), hasOwner(Tom, Leonard).

It is easy to see that the knowledge base K′ = 〈T , A′〉 is unsatisfiable, since the func-
tionality assertion on hasOwner is contradicted by the two role membership asser-
tions of A′. Then, each repair I of K′ is such that I |= T , and either Sat(I, A′) =
{hasOwner(Tom, John)}, or Sat(I, A′) = {hasOwner(Tom, Leonard)}. Let us now
consider the Boolean conjunctive query q′ = ∃y.hasOwner(Tom, y) over K′, ask-
ing whether Tom is owned by someone. It is easy to see that q is consistently en-
tailed by K′. However, for the query q′′ = { x | hasOwner(Tom, x) }, we have that
ConsAns(q′′, K′) = ∅. In other words, we cannot establish who is the owner of Tom,
but we can state that Tom has an owner.

4 Consistent Query Answering

In this section we consider the problem of consistent query answering for conjunctive
queries over both DL-LiteF and DL-LiteR KBs. In particular, we study the computa-
tional complexity of the problem, and show that for both such DLs it is coNP-hard w.r.t.
data complexity, i.e., the complexity measured w.r.t. the size of the ABox only. Let us
now first analyze DL-LiteF KBs.

Theorem 1. Let K be a DL-LiteF KB, q a conjunctive query of arity n over K, and t
an n-tuple of constants. Then, the problem of establishing whether t ∈ ConsAns(q, K)
is coNP-complete with respect to data complexity.

Proof (sketch). We prove coNP-hardness by a reduction from the 3-COLORABILITY
problem to the complement of our problem. Given a graph G = (V, E), where V is
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the set of vertices of G, and E is the set of edges of G, we define a DL-LiteF KB
K = 〈T , A〉, with basic roles color and edge , as follows:

T = {(funct color )}
A={edge(v1, v2) | (v1, v2) ∈ E} ∪ {color(v, R), color (v, G), color (v, B) | v ∈ V }

Then, we consider the following Boolean conjunctive query q over K:

∃x, y, z.edge(x, y) ∧ color (x, z) ∧ color (y, z).

Since computing the consistent answers to the Boolean query q means establishing
whether K |=cons q, we can prove our claim by showing that K �|=cons q iff G is
3-colorable.

Membership in coNP follows from an analogous result given in [21] for consistent
query answering of conjunctive queries over relational databases with exclusion and
key dependencies. Indeed, consistent answers in our setting can be computed by means
of the algorithm of [21], which is based on an encoding of the problem in Datalog
enriched with unstratified negation. Since, however, only relations with at most one key
dependency are considered in [21], to be applied to the present setting, the algorithm
has to be generalized to deal with the presence of both (funct P ) and (funct P−), for
an atomic role P (this can be easily done by adding a proper rule to the encoding).

We now consider DL-LiteF KBs, and obtain the same complexity result, as stated by
the theorem below.

Theorem 2. Let K be a DL-LiteR KB, q a conjunctive query of arity n over K, and t
an n-tuple of constants. Then, the problem of establishing whether t ∈ ConsAns(q, K)
is coNP-complete with respect to data complexity.

Proof (sketch). The proof of coNP-hardness is as for Theorem 1. The only difference is
in the form of the KB, which is in this case a DL-LiteR KB K = 〈T , A〉, with basic
roles color r, color g , color b, color and edge , and TBox and ABox as follows:

T = {colorr � color , color g � color , color b � color , } ∪
{∃color r � ¬∃color g, ∃color r � ¬∃color b, ∃color g � ¬∃color b}

A = {edge(v1, v2) | (v1, v2) ∈ E} ∪
{colorr(v, R), color g(v, G), color b(v, B) | v ∈ V }

Membership in coNP follows again from the results of [21].

The above results tell us that consistent query answering over DL-Lite KBs is in gen-
eral intractable w.r.t. data complexity, differently from the problem of (standard) query
answering over DL-Lite KBs, i.e., the problem of computing certain answers to queries
under the standard semantics given in Section 2, as shown in [11,12]. Notice that
tractability of query answering (and of classical DL reasoning services) is a crucial
property for DLs of the DL-Lite family, since they are particularly suited for dealing
with big amounts of data. Therefore, the problem arises of identifying interesting cases
in which consistent query answering is tractable. As we will show in the next section,
consistent instance checking is in fact tractable over both DL-LiteF and DL-LiteR KBs.
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5 Consistent Instance Checking

In this section we study consistent instance checking over DL-Lite KBs, and show that,
differently from consistent query answering, such a problem is in PTIME w.r.t. data
complexity. For ease of exposition, and due to space limits, we show here only the case
in which the KB is specified in DL-LiteF . However, the technical treatment below can
be easily adapted to deal with DL-LiteR KBs, and therefore our results are valid also
for KBs of this kind.

Let us first consider only KBs without positive inclusions (PIs), i.e., inclusions of
the form B1 � B2, where B1 and B2 are basic concepts. KBs without PIs are called
DL-LiteF− KBs, and as TBox assertions contain only functionality and negative inclu-
sion (NIs) assertions, i.e., inclusions of the form B1 � ¬B2.

Given a DL-LiteF− knowledge base K, we consider the problem of consistent entail-
ment of a Boolean union of atoms q over K, i.e., a Boolean UCQ

∨
i=1,...,n ∃yi.conj i

(yi) such that, for each i ∈ {1, . . . , n}, conj i(yi) consists of only a single atom. We
are interested in studying this problem, since, as we will show in the following, solving
it will allow us to easily solve consistent instance checking over DL-LiteF KBs. We
start by introducing some preliminary notions.

Given a DL-LiteF− KB K = 〈T , A〉, a membership assertion α is called inconsistent
in K if there exist no repair R of K such that R |= α. Otherwise α is called consistent
in K. Notice that consistent membership assertions may violate intensional assertions
of the TBox only together with other membership assertions, whereas an inconsistent
membership assertion contradicts alone the TBox. Then, it is easy to see that mem-
bership assertions in A that are inconsistent in K cannot contribute to the consistent
entailment problem mentioned above.

In order to get rid of inconsistent membership assertions, we define the algorithm
DeleteInconsistentFacts(K), which takes as input a DL-LiteF− KB K = 〈T , A〉
and returns a DL-LiteF− KB K′ = 〈T , A′〉 where A′ is obtained from A by delet-
ing all membership assertions that are inconsistent in K, i.e., the algorithm discards
each membership assertion α such that the KB 〈T , {α}〉 is unsatisfiable. Intuitively,
a membership assertion of the form A(a) (resp. P (a, b)) is not satisfied by any re-
pair, if there is an assertion on the TBox which implies that the concept A (resp. the
role P ) has to be interpreted by the empty set in any interpretation. More precisely,
DeleteInconsistentFacts(K) computes the ABox A′ by deleting assertions from A as
follows:

– delete each assertion A(a) such that the NI A � ¬A belongs to T ;
– delete each assertion R(a, b) such that either the NI ∃R � ¬∃R or the NI ∃R− �

¬∃R− belongs to T ;
– delete each assertion R(a, a) such that the NI ∃R � ¬∃R− or the NI ∃R− � ¬∃R

belongs to T .

It is easy to see that DeleteInconsistentFacts(K) deletes only assertions that are in-
consistent in K, and that every assertion that is not deleted by DeleteInconsistentFacts
(K) is satisfied by at leat one repair of K (i.e., every assertion in A′ is consistent in K).
Furthermore, we easily have that Rep(K) = Rep(K′).
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The following definition provides the important notion of K-opponent to a member-
ship assertion.

Definition 2. Let K = 〈T , A〉 be a DL-LiteF− KB, and let α be a membership as-
sertion in A consistent in K. Then, a membership assertion β is a K-opponent to α if
β ∈ A and the KB 〈T , {α, β}〉 is unsatisfiable.

Intuitively, a K-opponent to a membership assertion α is a membership assertion which
together with α contradicts a functionality assertion or a negative inclusion assertion in
the TBox T .

Finally, we introduce the notion of an image of a query. Let q =
∨

i=1,...,n ∃yi.conj i

(yi) be a Boolean union of atoms. Then a membership assertion γ is an image of q if
there is an i ∈ {1, . . . , n} such that there exists a substitution σ from the variables in
conj i(yi) to constants in γ such that σ(conj i(yi)) = γ. Roughly speaking, an image of
q is a membership assertion γ such that q is entailed by the knowledge base constituted
only by the assertion γ. Given a DL-Lite ABox A and a Boolean union of atoms q,
IMAGES(q, A), denotes the set of images of q in A.

With this notion in place we can rephrase the problem of consistent entailment of
a Boolean union of atoms q, and say that q is consistently entailed by a DL-LiteF−

KB K = 〈T , A〉 if for each R ∈ Rep(K) there exists γ ∈ IMAGES(q, A) such that
R |= γ. Obviously, since an image is a membership assertion, it can be either consis-
tent or inconsistent in K. If it is consistent in K, it may have opponents according to
Defintion 2.

Example 4. Consider the KB K = 〈T , A′〉 of Example 3, and the query
q′ = ∃y.hasOwner (Tom, y). It is easy to see that hasOwner (Tom, John) is a consis-
tent image of q in A, and that hasOwner(Tom, Leonard) is a K-opponent to hasOwner
(Tom, John). Notice also that in this particular example also hasOwner(Tom, Leonard)
is a consistent image of q in A, and obviously hasOwner (Tom, John) is a K-opponent
to hasOwner (Tom, Leonard).

In Figure 1, we provide an algorithm, called ConsAnswer, which takes as input a
DL-LiteF− KB K and a Boolean union of atoms q and verifies whether q is consistently
entailed by K.

Intuitively, after using the algorithm DeleteInconsistentFacts to drop all member-
ship assertions of A that do not belong to any repair of K, the algorithm ConsAnswer
verifies whether there exists an image γ such that either (a) γ has no K-opponents or
(b) every K-opponent β to γ is such that β has at least one K-opponent β′ which is not
K-opponent to γ and is in turn K-opponent to a different image γ′. If the condition (a)
succeeds, then the query q is consistently entailed by K since every repair of K satisfies
the same image of q in A. As for condition (b), it ensures that if a repair R does not
satisfy the image γ, since it satisfies the opponent β of γ, R satisfies another image γ′,
whose satisfaction is guaranteed by the fact that R does not satisfy β′.

The following theorem states soundness and completeness of the algorithm Con-
sAnswer.

Theorem 3. Let K be a DL-LiteF− KB and let q be a Boolean union of atoms. Then,
K |=cons q iff ConsAnswer(K, q) returns true.
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Algorithm ConsAnswer(K, q)
Input: DL-LiteF− KB K = (T ,A), Boolean union of atoms q
Output: true if K |=cons q, false otherwise
begin
K := DeleteInconsistentFacts(K);
for each γ ∈ IMAGES(q,A) do

if
for each K-opponent β to γ
there exists K-opponent β′ to β such that

β′ is not a K-opponent to γ
and there exists γ′ ∈ IMAGES(q,A) such that

β′ is a K-opponent to γ′

then return true;
return false;

end

Fig. 1. The Algorithm ConsAnswer

Let us now turn our attention to the problem of consistent instance checking over
DL-LiteF KBs. We now show that it is possible to exploit the algorithm ConsAnswer
to solve such a problem. The basic idea is to separate reasoning on PIs from reasoning
on NIs and functionalities. Whereas for the latter form of reasoning we will make use
of the algorithm ConsAnswer presented above, for the former we resort to the results
of [11]. These results show that in the presence of satisfiable DL-LiteF KBs, i.e., KBs
in which the ABox does not contradict intensional knowledge of the TBox, (standard)
query answering of a UCQ q can be solved by first processing PIs through a rewriting
technique, which produces a new UCQ qr , called perfect rewriting of q, and by then
evaluating qr over the ABox seen as a flat relational database.

To verify KB satisfiability, the use of the following construction is needed (cf. [11]).

Definition 3. Let T be a DL-LiteF TBox. We call NI-closure of T , denoted by cln(T ),
the TBox defined inductively as follows:

1. all negative inclusion assertions in T are in cln(T );
2. all functionality assertions in T are in cln(T );
3. if B1 � B2 is in T and B2 � ¬B3 or B3 � ¬B2 is in cln(T ), then B1 � ¬B3 is

in cln(T );
4. if one of the assertions ∃P � ¬∃P , or ∃P− � ¬∃P− is in cln(T ), then both such

assertions are in cln(T ).

In other words, cln(T ) is a special TBox that does not contain PIs and is obtained by
closing the NIs in T with respect to the PIs in T (notice, however, that not all NIs
logically implied by T are inserted in cln(T ), but only those that are needed for our
aims). The TBox cln(T ) results particularly useful for testing KB satisfiability, since it
is possible to show that a DL-LiteF KB K = 〈T , A〉 is satisfiable if and only if the KB
〈cln(T ), A〉 is satisfiable. Furthermore, satisfiability of 〈cln(T ), A〉 can be carried out
by simply issuing suitable first-order queries over the ABox A.
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In order to compute the perfect reformulation of a conjunctive query q, in [11] an
algorithm is defined, called PerfectRef, which takes as input a UCQ q and a DL-LiteF
TBox T . Roughly speaking, in PerfectRef, PIs in T are used as rewriting rules, it-
eratively applied from right to left to atoms occurring in the query, thus allowing for
compiling away in the rewriting the intensional knowledge of T that is relevant for an-
swering q. We do not give here the exact definition of the algorithm PerfectRef, and
refer the reader to [11] for further details.

We now extend the results in [11] by considering generic DL-LiteF KBs (either satis-
fiable or unsatisfiable), and provide the following theorem which shows that consistent
query answering for UCQs over DL-LiteF KBs can be reduced to consistent query an-
swering of UCQs over DL-LiteF− KBs.

Theorem 4. Let T be a DL-LiteF TBox, q a UCQ over T , and let qr be the UCQ re-
turned by PerfectRef(q, T ). Then, for each DL-LiteF ABox A, we have that
ConsAns(q, 〈T , A〉) = ConsAns(qr , 〈cln(T ), A〉).

With the above result in place, we can now turn back to the problem of consistent in-
stance checking over DL-LiteF KBs. Figure 2 shows an algorithm, called ConsEntails,
that takes as input a DL-LiteF KB K and a membership assertion α and verifies whether
α is consistently entailed by K. Notice that the algorithm first computes the perfect re-
formulation qr of the Boolean conjunctive ground query α, and then makes use of the
algorithm ConsAnswer with the DL-LiteF− KB 〈cln(T ), A〉 and the query qr as input.
Such an usage of ConsAnswer is possible since it can be shown that PerfectRef(α, T )
returns always a Boolean union of atoms, whatever DL-LiteF membership assertion α
and TBox are taken as input.

Algorithm ConsEntails(K, α)
Input: DL-LiteF KB K = 〈T ,A〉, membership assertion α
Output: true if K |=cons α, false otherwise
begin

qr := PerfectRef(α, T );
return ConsAnswer(〈cln(T ),A〉, qr );

end

Fig. 2. The Algorithm ConsEntails

The following theorem states soundness and completeness of the algorithm Con-
sEntails.

Theorem 5. Let K be a DL-LiteF KB and let α be a membership assertion. Then,
K |=cons α iff ConsEntails(K, α) returns true.

We finally exploit the algorithm ConsEntails to analyze the computational complexity
of the consistent instance checking problem.

Theorem 6. Let K be a DL-LiteF KB and let α be a membership assertion. The prob-
lem of establishing whether K |=cons α is in PTIME with respect to data complexity.
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Proof (sketch). The proof is a consequence of Theorem 5 and of the fact that the algo-
rithm ConsAnswer((T , A), q) runs in time polynomial with respect to the size of the
ABox A. Indeed, if n is the number of assertions inA, then: (i) DeleteInconsistentFacts
(K) can be computed in time linear in n; (ii) for every atomic query q, the size of IMAGES
(q, A) is at most n, and for every membership assertion α, the number of K-opponents to
α is also at most n. Consequently, the algorithm has a cost of O(n4).

As said at the beginning of this section, we can also give the analogous of the theorem
above for DL-LiteR KBs.

Theorem 7. Let K be a DL-LiteR KB and let α be a membership assertion. The prob-
lem of establishing whether K |=cons α is in PTIME with respect to data complexity.

6 Related Work

Consistent query answering over ontologies can be seen as a particular problem of belief
revision [2], the area of Artificial Intelligence that studies the problem of integrating
new information with previous knowledge. However, from a computational perspective,
results from belief revision concern a setting in which knowledge is specified in terms
of propositional formulae of classical logic [18,19]. Therefore, no specific results are
given for the particular kind of belief revision that we have considered in this paper.

Dealing with inconsistency in ontologies has also received recently a growing atten-
tion in the SW community. Many works in this field focus on the issue of locating in-
consistencies in ontologies. In [28], a set of techniques for debugging OWL ontologies
is given, which allows for detecting unsatisfiable concepts and inconsistent ontologies.
In [29], diagnosing the causes of inconsistencies is investigated. In [6], a visual tool
for consistency checking is described. In [1], consistency of a DL-Lite KB is checked
through evaluation of first-order queries over the KB ABox. However, all these works
provide no support (or limited) to inconsistency management. Furthermore, with the
exception of [1], they are mainly focused on inconsistencies at the terminological level.

Other works are specifically tailored to handling inconsistent ontologies. In [31],
integrity preserving in modular ontologies is investigated. In [25], a framework for rea-
soning with inconsistent ontologies is presented. The framework is based on the notion
of selection function, which allows for choosing some consistent sub-theory from an
inconsistent ontology. Standard reasoning is then applied to the selected sub-theory.
An instantiation of the framework, based on a syntactic relevance-based selection func-
tion is also shortly described. In [22], a more extended framework that generalizes four
approaches to inconsistency handling is presented. In particular, consistency ontology
evolution, repairing inconsistency, reasoning with inconsistent ontologies, and ontol-
ogy versioning are considered. Both the last mentioned papers are mainly definitional,
and provide basic notions and abstract properties and algorithms. Furthermore, such
papers pursue a syntactic-based approach, which seems more suitable for dealing with
inconsistency at the terminological level, rather than at the instance level, as done in
the present paper. Nonetheless, our work can be seen as a special case of the task of
reasoning with inconsistent ontologies described in [22], where our notion of |=cons is
adopted for non-standard entailment.
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The relationship between the present work and the literature on consistent query
answering [3,17,7,10,20] has been briefly discussed in the previous sections. We fur-
ther point out that neither of the papers from this area considers the same combination
of integrity constraints (in the present setting given in terms of TBox assertions) and
reasoning services studied in the present paper.

7 Conclusions

The present paper can be extended in several directions. We are currently working on
a completely intensional technique for consistent instance checking, with the aim of
reducing this problem to query evaluation over a database instance representing the
KB ABox. Such a technique would allow us to maintain reasoning at the intensional
level, as can be already done for standard query answering over DL-Lite KBs. We are
also working in the direction of identifying other tractable cases of consistent query
answering over DL-Lite KBs. In this respect, we point out that results of the present
paper immediately imply that consistent query answering of Boolean ground union
of conjunctive queries is tractable. The same analysis is being carried out over other
DLs that allow for tractable reasoning [4]. Finally, we are also studying the problem of
consistent query answering over more expressive DLs.
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Abstract. In this paper we present a context-based architecture and
implementation for supporting the construction and management of con-
textualized RDF knowledge bases. The goal of this work is to take ex-
plicitly into account any possible contextual dependency of a collection
of RDF models, without losing sight of performance and scalability is-
sues. We are illustrating motivations, as well as theoretical background,
implementation details and test-results of our latest works.

1 Introduction

It is a well-known fact from past work on knowledge representation (see e.g.
[11,8,6,1]) that any formalization of knowledge is somehow context dependent.
In general, this means that the truth of a statement in a theory typically depends
on a collection of assumptions which qualify its interpretation and its holding (or
not holding). As the Semantic Web includes an attempt of making domain and
top-level knowledge available to web-based applications, the need for managing
context-dependence is becoming more and more crucial, as it is proved by a few
seminal papers on context and Semantic Web (see e.g. [2,7]).

Based on this foundational and theoretical works, this paper aims at con-
tributing a first implementation of a context-based RDF management system
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built on top of RDFCore [5]. As discussed in other papers, the underlying in-
tuitions of this work are the following: on the one hand, context can be used
as a way for restricting the scope of statements to the circumstances with re-
spect to which they are made; on the other hand, appropriate rules – which
formalize compatibility relations (CRs) across context-dependent collections of
RDF statements – can be used to specify the semantic relations which hold be-
tween different contexts, and therefore how statements from different contexts
can be used to answer queries across a contextualized RDF knowledge base.
Concretely, an RDF context is implemented as a named RDF graph (namely as
a graph which can be addressed as a whole through a single URI), and com-
patibility relations are RDF statements which express relations between context
URIs.

The contribution of this paper is to present one possible realization of a con-
textualized RDF knowledge base for the Semantic Web, and to illustrate our
progress based on the RDF knowledge base management system (KBMS). We
have conducted a more extensive experiment to investigate performance aspects
of RDFCore and our extensions.

The paper is organized as follows: In Section 2 we present intuitive and tech-
nical motivations for our approach, as well as some related work. Section 3 de-
scribes our general proposal, whereas Section 4 contains a technical description
of the steps taken to realize our ideas. In Section 5 we present our experimenta-
tion results, and we wrap up with a conclusion and a short mention of planned
further works in Section 6.

2 Motivation and Related Work

One of the very appealing ideas of using ontologies in the Semantic Web is that
– with a shared ontology – two RDF Aboxes provided by different applications
can simply be merged, collapsed on identical URIs, and thus provide a new,
bigger KB for answering a query.

However, simple cases can be constructed that unveil problems with this view,
both on the practical and on the logical level. Take the example depicted in Fig. 1:
imagine we have a TBox T with relations that have cardinality constraints (e.g.
that a country can have at most one prime minister), and two ABoxes A and A′

with assertions compliant to this TBox (e.g. that Berlusconi is the Italian prime
minister and that Prodi is the Italian prime minister, respectively). The two
ABoxes, when taken in isolation, are consistent with the cardinality constraint;
however, when merged, they may produce a situation which is formally inconsis-
tent, though intuitively it may be the case that the two statements implicitly refer
to different points in time (e.g. 2005 and 2006 respectively).

Based on the literature on context in knowledge representation (see, for ex-
ample, the classical papers cited in the introduction), we propose to address this
general problem by binding consistent sets of assertions to the circumstances
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Fig. 1. Example formalization that produces an inconsistency when merged

they were made under, i.e. to limit their scope to a context, as we will describe
in Section 3.

As discussed in [7,3,4], this contextualization can serve as a basis for a number
of KR modelling aspects, such as temporal evolution, trust, beliefs and prove-
nance. The contributions of our approach compared to the proposals made in
[7,4,10,9] as well as compared to named graph implementations in current RDF
triple stores are that (i) we do not propose or require an extension of the cur-
rent RDF standard and (ii) we aim at providing support for managing cross-
contextual inference via compatibility relations (CRs). These relations between
contexts may have procedural semantics1 and thus enable us to make explicit in
which way the assertions in the related contexts are supposed to be combined
for query answering, to provide for flexible and powerful contextual reasoning as
envisioned in the mentioned bibliography.

3 An Exemplary Compatibility Relation

The EXTENDS relation we have chosen to illustrate is meant to describe a
situation where we know that two contexts describe the same object, but assume
that one context contains more information about it than the other.

Take the example of two Information Extraction processes P and P ′ that are
run on the same document, at different points in time. Assume P ′ is a more
advanced process and is able to extract more information from the document.
We propose to model this as two contexts C (created by P ) and C′ (created
by P ′) with a relation EXTENDS that explicates that C′ is an extension to
C (a necessary condition for this relation is that both contexts describe the
same object). Intuitively we want to keep the information derived from different
sources separate and with explicit metadata, but have the possibility to combine
the resulting information where necessary.

1 And can therefore not be formalized in an OWL ontology.
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Fig. 2. Two contexts C and C’ in an EXTENDS relation

When a query q is posed on C′, the procedural semantics of EXTENDS are
envisioned as follows:

if q has results in C’

then return result set

else

propagate query to the union of C’ and C.

One issue that becomes obvious immediately is the case where the union of C′

and C produces an inconsistent ABox which makes query answering impossible.
This can result from cardinality constraints in the TBox (see the Berlusconi-
Prodi example in Sect. 2), or subsumption issues (an individual o is said to be
instance of different classes). Our basic solution approach is to extract a minimal
subgraph containing the statement(s) that caused the inconsistency into a named
graph NG, as illustrated in Fig. 2. The result is that the query can be processed
on the conflict-free part of the union of C′ and C.

The case becomes of course slightly more complex when we take into account
more than two contexts. We envision the EXTENDS relation to be transitive.
This can result in a reasoning chain i) when establishing the relation, as conflicts
have to be detected and re-modelled and ii) when querying the contexts, as
the necessary contexts and relevant subgraphs have to be traversed. This chain
however is non-cyclic, as the relation is directional. Section 4 describes our first
implementation of this relation.

We have chosen to attack and illustrate this specific relation due to its relative
complexity. However, we are convinced that our basic approach as described
in [13] is fairly general and can be used to implement relations of different kinds.
In the course of the project we envision relations that make explicit temporal
evolution, trust and a number of domain specific aspects.

4 Realization

4.1 The Compatibility Relations Ontology (CRO)

The CRO contains the definition of the main concepts used to describe the
KB structure in terms of contexts; it contains the definition of Context and
the definition of Graph, where both concepts represent entities that are named
graphs; a Context has the (informal) property of representing something that
has a meaning as a whole, e.g. the set of statements extracted from a specific
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Fig. 3. Domain-range view of the CR Ontology

document, at a specific time, with a specific algorithm, while a Graph is a set
of statements that is included in one or more Contexts or other Graphs, but
has no specific meaning alone (e.g. the set of statements in a Context that cause
inconsistencies with another Context). A domain-range view of the CRO is given
in Fig. 3.

Moreover, the CRO contains the definition of the SplittingReason class, which
represents the reason that led to the isolation of a part of a Context and the stor-
age of that fragment as a Graph; a SplittingReason instance includes references
to the Context from where the statements that are being split belonged, the
Graph that will hold these statements, the reason for which this split has been
done, e.g. because the statements create inconsistencies w.r.t. another context
(which is also linked to the reason), and the reification of the statements in the
CRO that triggered the split, if any. An example of SplittingReason generation
is illustrated in detail in Sect. 4.3.

The CRO also acts as a registry for CompatibilityRelation implementations,
since each declaration of a CompatibilityRelation amounts to the declaration of
a property in this ontology; an AnnotationProperty for this property, called im-
plementation uri, gives the java class name of the corresponding implementation;
this is used to retrieve the set of CompatibilityRelation that RDFContextManager
will use when managing the CRO and the knowledge base.

4.2 RDFContextManager

The component we developed to manage contexts is called RDFContextMan-
ager ; its architecture bases on the work we presented in [12]. RDFContextMan-
ager provides methods to i) manage the contents of the Compatibility Relation
Ontology (CRO) as described in 4.1, ii) add, remove or update Contexts and
Graphs in the underlying persistence layer and iii) obtain Views over a Context,
respecting all the relation chains involved.
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A CompatibilityRelation is an implementation of a Java interface exposing
methods to assess whether an implementation of CompatibilityRelation should
be triggered by actions performed on the CRO (e.g. the insertion of a statement
C1 EXTENDS C2 should trigger the consistency check over C1 � C2), and to
provide a set of Contexts or Graphs that would be included or excluded in a
View over a Context C1, e.g. because of an EXTENDS or a part of relation or
chain of relations.

The implementation we are presenting in this paper relies on RDFCore for
RDF models storage, and on Pellet2 for reasoning tasks such as consistency check
over a View. In our example, a DL reasoner is used by the CompatibilityRelation
implementation3, while all the storage and retrieval of RDF models is done on
RDFContextManager, which uses RDFCore and its facilities for model storage
and query[13], using the multiuser environment of RDFCore to enable use of
Context information by other applications.

The simplest use case for the framework is as follows. An external application
adds one or more different Contexts in RDFContextManager, assigning them
URIs or letting RDFContextManager choose one. The external application as-
serts some relations between the contexts or specific to a context; the relations
between the contexts are expressed through properties defined in the CRO, and
are effected through the RDFContextManager API. RDFContextManager re-
ceives these new assertions, and triggers all the CR implementations available
into first verifying if any of the new assertions is relevant (i.e. the asserted relation
corresponds to the URI the implementation is attached to) and then checking
whether the new relation is likely to cause reorganization of the knowledge base;
if this is the case, corrective actions are undertaken. Finally, the external appli-
cation makes a query over the CRO to find out all the contexts that satisfy some
conditions (e.g. all the contexts which have been created in a specific date), and
then asks to perform a query over the set of statements resulting from the union
of the contexts; this involves creation of a View for each context that is selected
by the query.

4.3 Implementation of EXTENDS

The algorithms involved in the EXTENDS relation are as follows:
Two contexts C1 and C2 are inserted in RDFContextManager, and C1 is

asserted to extend C2 w.r.t a specific subject S1 with the following statements
in the CRO:

< C1 EXTENDS C2 >, < C1 rdf : about S1 >, < C2 rdf : about S1 >

The implementation of EXTENDS will be triggered to check for consistency
and the necessity of knowledge base reorganization. If any inconsistency is de-
tected, EXTENDS tries to isolate the responsible statements, selects those
2 www.mindswap.org/2003/pellet/
3 Note that different implementations could need – and are allowed to have – different

reasoning settings, e.g. only RDFS or OWL Lite inference rather than OWL DL
inference.

www.mindswap.org/2003/pellet/
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that appear in C2 and removes them from C2; the statements are then stored as
a Named Graph G1. The split is tracked by creating a SplittingReason object,
connected to C2, which is the source, and G1, which is the result; it is also con-
nected to a reason, which in this case is instance of the Inconsistency class, and
in turn to C1 which is related as incompatible w.r.t G1. The statements added
to the CRO are reified and attached to the SplittingReason as triggers, in order
for the split to be traceable, and finally a part of relation is asserted between
C2 and G1. Since the EXTENDS relation is defined transitive, in case C2 is
already connected through a EXTENDS relation to other contexts, then the
check is performed not against C2 alone but over the resulting View; the gen-
erated splits in the KB can then be distributed along the EXTENDS chain,
which is one of the scalability issues we analyze in Sect. 5.

When a View over C1 is requested, all the CR implementations are requested
to provide a set of Contexts or Graphs that must not appear in the final view
(EXCLUDE set), i.e. are requested to forbid to follow some paths in the CRO
assertions; this is because, when multiple CR are present, some of them may
forbid the presence of a result that others would allow to appear in the results;
simply removing all the forbidden results after all the paths are followed is not
correct nor efficient, since this would require complex pruning strategies. After
the EXCLUDE set has been computed, all the CR implementations are required
to provide the set of Contexts or Graphs that should appear in the resulting View
(INCLUDE set), and they will prune their visiting graph as soon as a forbidden
result is reached. The final View is then computed as the INCLUDE set plus
the resources connected through part of to these elements (not including those
in the EXCLUDE set). The View can now be viewed as a single model, or the
set of URIs for the contexts and graphs can be used as dataset for the FROM
part of a SPARQL query to be issued to RDFCore, which in turn uses ARQ4 as
SPARQL engine to interpret and answer it.

5 Results

In this section we presents the empirical evaluation we have conducted so far. In
order to check the system for scalability, we needed to design a big knowledge
base with non trivial contents, and at the same time divided in smaller chunks
without changing the semantics of the content. This, however, seems a very
difficult task, and so far we have not found real world ontologies that satisfy
these requirements, so we used a homemade tool to generate individuals for
a generic ontology; repeating the process many times gave us two well sized
knowledge bases.

Using the SOFSEM ontology,5 an ontology to describe the SOFSEM confer-
ence, we generated two knowledge bases, one composed of 30 models containing
about 70000 statements each (for a total of more than 2 millions triples), and
the other containing 900 models of about 2000 triples each (1.8 millions triples);
4 http://jena.sourceforge.net
5 http://nb.vse.cz/∼svabo/oaei2006/data/Conference.owl

http://jena.sourceforge.net
http://nb.vse.cz/~svabo/oaei2006/data/Conference.owl
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Table 1. Results for 70000 triples models

Model Consistency Model Consistency
number check (ms) number check (ms)
0 - 1 63476 10 - 11 60091
2 - 3 49529 12 - 13 62621
4 - 5 54184 14 - 15 59216
6 - 7 58410 16 - 17 58142
8 - 9 62342 18 - 19 62041

Table 2. Results for small sized models and long chains

Model View Consistency Model View Consistency Model View Consistency
number (ms) check (ms) number (ms) check (ms) number (ms) check (ms)

0 91 2043 9 156 5913 18 208 9986
1 176 2542 10 152 6076 19 214 10950
2 111 2956 11 175 6497 20 218 10699
3 122 3185 12 166 7101 21 232 11434
4 153 3634 13 175 7383 22 267 11696
5 114 3894 14 186 8046 23 242 12064
6 132 4328 15 195 8421 24 244 12706
7 134 4907 16 208 8862 25 249 13095
8 149 5057 17 220 9486 26 276 13476

on the first one, we tried to chain the models with EXTENDS relations in-
volving two models at a time, while in the second one we chained tirthy models
at a time, obtaining many chains, and then joined the chains. The results are
presented in Table 1, where the results for the first experiment are presented,
in Table 2 for the second experiment. The second experiment is also depicted in
Fig. 4.

As is evident from Fig. 4, the time elapsed to create a view over the graphs
is almost constant, even if the number of relations to navigate increases, while
the time elapsed to check the consistency of the models grows proportionally
to their size. It is important to note that the consistency check runs only when
new relations are enterend in the CRO; the most frequent operation, then, will

Fig. 4. Results trend for small sized models
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be the request to create a View starting from some specified models, and the
experimental evaluation shows that this operation is usually performed in less
than half a second on the test machine (a laptop with 512 MB of RAM, which
is not an adequate server setup). The time required to complete the consistency
check and automatic splitting on models of greater size is around one minute,
which is acceptable from our point of view if we consider that this operation has
to be done only once, and occasionally as new relations are added.

The most relevant point, here, is that requesting a View operation will return
a set of graph identifiers that can be used as dataset for a SPARQL query,
ensuring that the model resulting from the union of the queried data is consistent,
without having to check at the time of querying; this also means that the memory
requirements (at query time) of the framework only depend on the number of
relations between Contexts and Graphs, and not on the size of the contained
data, or on their complexity. The memory needed by the SPARQL engine to run
the query itself, instead, depends heavily on the specific query; still no complete
evaluation of the behavior of the system w.r.t. the possible kind of queries has
been performed.

6 Conclusion and Further Works

Basing on the opinion that contexts in Semantic Web KR are a way to tackle
some of the current limitations of the languages available and provide for bet-
ter scalability in some cases, we have presented a theoretical approach and an
implementation of Contextual Reasoning in a Semantic Web KB and the asso-
ciated testing results. We have not only implemented a context mechanism into
our KBMS to be able to use a context as a first-class object in assertions, but
also illustrated a way to provide for context relations with procedural semantics
which – in our opinion – is required for a complete context functionality.

Our next steps will be directed towards the formal definition and implemen-
tation of more compatibility relations. Some of them will be as required by the
VIKEF project, but we are also interested in exploring more general and domain
independent relations between contexts and their properties.

On the implementational side, these planned steps will be accompanied by
the development of a more standardized test set and a set of exemplary queries
that specifically display and make use of contexts, to assess the practicability,
performance and scalability of our implementations.
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Abstract. This paper describes an hybrid method combining symbolic
and numerical techniques for annotating brain Magnetic Resonance im-
ages. Existing automatic labelling methods are mostly statistical in na-
ture and do not work very well in certain situations such as the presence
of lesions. The goal is to assist them by a knowledge-based method. The
system uses statistical method for generating a sufficient set of initial
facts for fruitful reasoning. Then, the reasoning is supported by an OWL
DL ontology enriched by SWRL rules. The experiments described were
achieved using the KAON2 reasoner for inferring the annotations.

1 Introduction

Identifying anatomical structures in brain Magnetic Resonance Images (MRI) is
an important aspect of the preparation of a surgical intervention in neurosurgery,
especially when the lesion is located in the cerebral cortex. A precise labelling of
cortical structures (gyri, sulci) surrounding the lesion is particularly necessary
to determine an optimal surgical strategy. Existing automatic approaches for an-
notating brain images are often statistical, e.g., based on Statistical Probability
Anatomy Maps (SPAMs) [1]. A SPAM is a 3D probabilistic map associated to a
particular anatomical structure. The value at each voxel position represents the
probability of belonging to this structure at that location. The statistical data
used in our system were derived from a database of 305 normal subjects, after
re-alignment of MRI data into a common reference system (called stereotaxic
space). SPAMs-like methods have an important drawback. They are not robust
against deformations and shifts caused by a lesion in the brain. A symbolic
method, using a priori knowledge about topological relations between the cere-
bral structures may be an alterative or a complement to compensate it, since in
contrast topological relations are preserved. This paper describes a new hybrid
method for annotating brain images where SPAMs are used to get a sufficient
set of initial facts for reasoning. Reasoning is supported by an OWL1 ontology
1 http://www.w3.org/TR/owl-features/

M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 219–228, 2007.
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about the brain cortex anatomical structures and Horn rules capturing the topo-
logical dependencies between the brain structures. OWL offers several benefits.
The labels get a clear and well-defined semantics. The brain ontology becomes
interoperable. OWL provides useful services for its design and maintainance. Us-
ing Web standard languages makes the ontology and rules sharable on the Web.
Thus, they can be used to annotate images distributed in multiple sources.

2 Method

The method consists of two main steps. The first step is the segmentation of the
brain and the extraction of the sulci tracks from an MRI exam. The second step,
is the annotation of a region of interest (ROI) selected from the sulci graph. This
paper mainly focuses on the second step.

Reasoning is performed from an ontology of the brain structures enriched by
rules representing their topological dependencies, and initial facts provided by
numerical and statistical tools (SPAMs). The complete process of the application
is: (1) acquiring the patient MRI ; (2) brain segmentation; (3) extraction of the
external tracks of the sulci; (4) selection by the user of a region of interest and
extraction of the corresponding subgraph of sulcus segments delimiting surfaces
corresponding to the parts of gyrus (called patches) present in the region; (5)
initialization of the ABox A. The above numerical and statistical treatments
lead to the initial facts, OWL individuals and role values representing their
topological relations, as explained thereafter; (6) reasoning based on the brain
ontology O, the rule base R, and the ABox A (with some user interaction), (7)
Finally, the inferred labels of the structures are involved in the ROI.

2.1 Populating the Abox

First, the numerical tools extract the sulci of a ROI and delimit the surfaces
limited by the sulci (patches). They also provide the topological relations and
the orientations between the different patches and sulcus segments.

The yellow segments figure 1 (left) show the sulci of the ROI. The patches
(e.g.; P7, P8, P9 etc.) are delimited by the sulci (e.g.; 178, 124 etc.) (right). The
facts extracted by the numerical tools from this graph are represented in OWL
DL (figure 2 left). For example P9 is an individual of the class Patch while 178
is a SulcusSegment. The property isMAEBoundedBy has a value (individual of
the class AttributedEntity) expressing that P9 is bounded by the segment 178
with a posterior orientation, and other segments 423, 424 etc.

These facts are then completed by data computed from the SPAMs. A SPAM
is a 3D image file associated to a particular anatomical structure, for instance,
a particular gyrus. The information at each point of this 3D image pt(x, y, z)
represents an estimate of the probability to belong to this particular structure.
Each segment si of the ROI is a set of points. We first transform the points
coordinates into coordinates of the reference space, i.e. the stereotaxic space.
Then we calculate the probability pij of the segment si to belong to a SPAM spj

by calculating the average of the probabilities of all its (transformed) points. For
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Fig. 1. Extraction of the ROI graph

<Patch rdf:ID="p9">
...
<isMAEBoundedBy>

<AttributedEntity rdf:ID="AttEntity1">
<entity>

</entity>
<SulcusSegment rdf:ID="178"/>

<orientation>
<Posterior rdf:ID="posteriorTo"/>

</orientation>
<MAEBounds rdf:resource="#p9"/>

</AttributedEntity>
</isMAEBoundedBy>
...

</Patch>

<owl:Class redf:ID="Orientation">
<rdfs:subClassOf>

<owl:Class rdf:ID="Posterior"/>
</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="isMAEBoundedBy">
<inverseOf>

<owl:objectProperty rdf:about="#MAEBounds">
</inverseOf>

</owl:ObjectProperty>

Fig. 2. Facts in the ABox (left), OWL class and ObjectProperty (right)

each segment we store the two highest probabilities that have been computed
(figure 3). These values computed from the SPAMs, and the abstractions rules
presented below enable to automatically acquire the initial facts of the Abox A.

Computing the boundaries and separations. Some heuristics have been defined
to determine whether a sulcus ’bounds’ a SPAM or ’separates’ two SPAMs: if
the two highest probabilities are small, over a given threshold MIN , then the
segment is asserted to separate or to bound the corresponding SPAMs, else if
they are very big, over a given threshold MAX , then the segment is asserted
to be inside the corresponding SPAM. The thresholds MIN and MAX are de-
fined empirically. More precisely, the rules that abstract the topological relations
regarding the boundaries and separations are:

– if(pi1 ∈ [MIN, MAX ] and pi2 ∈ [MIN, MAX ]) then si separates sp1
and sp2. Indeed it means that si is located between sp1 and sp2 that is si

separates them, e.g.; S1 figure 4).
– if(pi1 ∈ [MIN, MAX ] and pi2 < MIN) then si bounds sp1, indeed

low values mean that si is located at the extremity of the SPAM thus it is
a boundary (e.g.; S3 figure 4)
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�����������SulcusSegment
Gyrus

Precentral Postcentral Angular SupTemporal ...

ID = 183 0.384 0.186 0 0 .

ID = 178 0.218 0 0 0 .

ID = 155 0 0.477 0.105 0 .

ID = 298 0 0.038 0 0.076 .

Fig. 3. Example of probabilities

Fig. 4. Computing facts about separation and boundary from SPAMS

– if(pi1 > MAX and pi2 < MIN) then si isInside an instance sp1,
indeed these values indicate that si is within the SPAM (e.g.; S2 figure 4)

Computing the orientations. Each entity has three orientations: (Right or Left),
(Posterior or Anterior) and (Superior or Inferior). To determine the orientations
of the segments w.r.t SPAMs, for example that a segment si bounds a SPAM
spj with an anterior orientation, we compare the coordinates (x, y, z) of the
centre of the segment, transformed into the reference space, to the coordinates
(x′, y′, z′) of the SPAM centre.

The heuristic rules below abstract the orientations:

– if x > x′ then si isRightT o spj else si isLeftT o spj

– if y > y′ then si isAnteriorT o spj else si isPosteriorT o spj

– if z > z′ then si isSuperiorT o spj else si isInferiorT o spj

Since such rules could not be used by KAON2, they were applied using a
C + + procedural program. The resulting role values, e.g.; separates(s0, (prcgr,
anteriorT o, rightT o, superiorT o), (pcgr, posteriorT o, leftT o, inferiorT o))
are represented in OWL (figure 4).

2.2 Brain Ontology and Rules

The knowledge base consists of the brain ontology enriched with rules [6]. For
the moment, the ontology about the sulci and gyri is represented in OWL DL,
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Fig. 5. Brain ontology and rules edited with Protégé

the rules in SWRL. They have been edited using Protégé OWL and the SWRL
plugin2 (figure 5). During the construction of the ontology we have been assisted
by a neurosurgeon, and used the Ono Atlas [5] and other sources.3

– Tbox:The Tbox provides the logical definitions of concepts (classes), roles
(properties) and the asserted axioms. For example, the necessary and suffi-
cient condition to be a segment of the right central sulcus is4: RightCentral-
SulcusSegment ≡ ((∃ MAEBounds ((∃ entity (∃ partOf RightPost

CentralGyrus)) � (∃ orientation Anterior))) � ((∃ MAEBounds

((∃ entity (∃ partOf RightPreCentralGyrus))� (∃ orientation Poste-
rior)))) (figure 5). This OWL definition expresses that a segment of central
sulcus is bounded by a part of postcentral gyrus with an orientation which is
an instance of Anterior, and is bounded by a part of precentral gyrus with an
orientation which is an instance of Posterior.

– Rule-box: The Rule-box contains all the rules extending the ontology, for ex-
ample the rule bellow expresses that a boundary is propagated from parts to
whole: isMAEBoundedBy(?x, ?y)∧hasSegment(?z, ?y)∧SulcalFold(?z)∧
SulcalFold(?y)∧MAE(?x)→isMAEBoundedBy(?x, ?z). (figure 5) If a ma-
terial anatomical entity x is bounded by a sulcal fold y, and y is a segment of z,
then x is bounded by z. Such rules are needed to infer the missing knowledge
of the classes definitions for instance retrieval. Rules are also useful to express

2 http://protege.stanford.edu/
3 http://www.med.univ-rennes1.fr/∼dameron/thesis/dameronThesis.pdf
4 This is not the exact definition but a simplification for the example.

http://protege.stanford.edu/
http://www.med.univ-rennes1.fr/~dameron/thesis/dameronThesis.pdf
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queries. For example, to find all possible instances of gyri of which patches pi

of a ROI are part: Q(?xi, ..., ?xn) ← ∧i=1 to n(AE(?xi)) ∧ partOf(pi, ?xi).
– Abox: The Abox contains the individuals (instances of classes) and the

instances of relations between them as defined section 2.1.

All the knowledge, the ontology in OWL DL (Tbox), the Horn rules (Rule-
box), and the facts (Abox), are gathered within a single file provided as input
to the reasoner.

3 Reasoning for Brain Labelling

Figure 6 shows the overall process of reasoning: (1) From the list of sulci (seg-
ments) of the ROI and the list of SPAMs we get a table of probabilities (such
as Figure 3). This table is first created as an XML file. The heuristics presented
above derive the topological relations between the anatomical entities. The re-
sulting facts are stored in an OWL file. This file is merged with the ontology, the
rules, and the other facts coming from the numerical tools. (2) From this file,
the inference engine labels the patches as described below. The user validates
the result. (3) Next, the reasoner labels the sulci according to the ontology def-
initions enriched by rules. The user validates this step, and finally the labelled
image is obtained. The reasoning is performed as follows :

Labelling the patches. The patches are first labelled using the rules below. The
main rule used is a rule (RM) that makes a matching between the facts extracted
from the images by the numerical tools and the facts computed about their
boundaries and orientations w.r.t the SPAMs:

MAEBounds(?x, ?y)∧ SulcusSegment(?x) ∧ AttributedEntity(?y) ∧ ent-

ity(?y, ?z) ∧ Gyrus(?z) ∧ orientation(?y, ?b) ∧ MAEBounds(?x,

?c) ∧ AttributedEntity(?c) ∧ entity(?c, ?d) ∧ Patch(?d) ∧ orient-

ation(?c, ?b’) ∧ Orientation(?b) ∧ Orientation(?b’) ∧ sameAs(?b,

?b’) → partOf(?d, ?z)

This rule expresses that if it is known from the extracted facts that a segment
x bounds a given patch d with a given orientation b and it comes out from the
computed orientation that x bounds a SPAM z with the same orientation, then

SPAMs OWL ontology
Function free

Horn rules

List of segments
 in the ROI

FACTS
ACQUISITION

OWL ABox 
and RBox

GYRI
IDENTIFICATION

Gyri SULCI
IDENTIFICATION

Final
annotation

1 2 3

Fig. 6. Labelling process
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this patch belongs to the gyrus corresponding to that SPAM. The probability
associated to it is the probability pi calculated as explained section 2.1.

As there is a possible incertitude in the computed orientations mainly due to
the approximations caused by the SPAMs, it may occur that a segment bounds
two SPAMs with the same orientation, hence a patch d is inferred to belong to
several gyri zi with probabilities pi. To decide to which gyrus d finally belongs,
we calculate

∑
(pi) for each gyrus and keep the gyrus with the highest result.

The second rule (RS) below infers boundaries from a separation: if a given
sulcus separates two gyri then it bounds each of them. This rule is used to infer
boundaries from the known separations, information which is needed to fire the
first rule above.

separates(?x, ?y)∧SulcusSegment(?x)∧MAEPair(?y)∧firstEntity(?y,

?z)∧secondEntity(?y, ?a)∧AttributedEntity(?z) ∧ AttributedEnt-

ity(?a) → MAEBounds(?x, ?z)

Labelling the sulci. After the patches, the sulci are next labelled thanks to the
ontology definitions and the rules. If a given segment si satisfies a definition of
a given sulcus suj in the ontology, i.e. if it meets the necessary and sufficient
condition of suj, then si is classified as an instance of suj.

Simplified example.

– Let be a segment s0 and two patches p1, p2 of the ROI.
– the facts provided by the numerical tools include the individuals p1 and p2

and the relation separates(s0, (p1, anteriorT o, rightT o, superiorT o), (p2,
posteriorT o, leftT o, inferiorT o)) where anteriorT o, rightT o, superiorT o,
posteriorT o, leftT o, and inferiorT o are respective individuals of the classes
Anterior, Right, Superior, Posterior, Left, and Inferior.

– the facts computed from the SPAMs include the relation separates(s0, (prcgr,
anteriorT o, rightT o, superiorT o), (pcgr, posteriorT o, leftT o, inferiorT o))
where prcgr: RightPreCentralGyrus and pcgr: RightPostCentralGyrus.

The labels of the patches are obtained by answering the query Q(?xi, ...,
?xn) ← ∧i=1 to n(AE(?xi)) ∧ partOf(pi, ?xi). Applying the rule RS , facts about
boundaries are derived from the initial facts about separations, then as the body
of the matching rule RM can be satisfied by bindings its variable to known
individuals, the reasoner infers: partOf(p1, prcgr) and partOf(p2, pcgr). Next,
at a second step, the labels of the segments are obtained from the class definitions
in the ontology. As s0 satisfies the N&S condition of RightCentralSulcusSegment,
the reasoner infers that s0 is an instance of the RightCentralSulcusSegment.

4 Results and Discussion

This section presents some results obtained for real data with the method pre-
sented above. The experiments are achieved with the reasoner KAON25, which
5 http://kaon2.semanticweb.org/

http://kaon2.semanticweb.org/
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Fig. 7. Results obtained with KAON2

accepts ontologies extended with rules [2]. The region of interest is the auto-
matically extracted region displayed figure 1. We used 45 SPAMs corresponding
to the most important gyri of the brain. The MIN value approximated from
the computations is 0.05 and the MAX value 0.75.

Labels of patches. The SPARQL query6 SELECT ?x ?y WHERE ?x rdf:type
a:Patch ; a:partOf ?y asks for each patch all entities it is part of. The answers of
KAON2 to that query provide the labels of the patches, for example patch P6
is a part of the right superior temporal gyrus (figure 7).

Labels of sulcus segments. The query SELECT ?x WHERE ?x rdf:type a:Right-
CentralSulcusSegment asks for the right central sulcus segments. KAON2 returns
the segment 183 (figure 7), which is the single segment of the right central sulcus
for this ROI.

The labels inferred by the system are exhibited in figure 7. Most of the labels
are the same, except for P3 for which the label inferred by the system is wrong.
For example the patch P8 is inferred to be a part of the right precentral gyrus,
P1 is inferred to be a part of the right postcentral gyrus, and the segment
183 is inferred to be an instance of the right central sulcus segment, which is
correct since it separates parts of the right precentral gyrus from parts of the
right postcentral gyrus. This is an ongoing work. It will be interesting in the
future to assess how this percentage is affected by various aspects of the ontology
and rules, and the respective effect of the SPAMs and of the reasoning on the
results. The proposed method was adapted to comply with some language and
tools limitations, in particular with the version of the KAON2 reasoner available
online and the Protégé SWRL editor, for example:

6 The query language of KAON2.
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– For the moment the ontology was simplified using OWL DL instead of
OWL1.1[7]. We used existential restriction instead of qualified cardinality
restrictions (QCR). But, it should be noted that the real Tbox requires both
QCR, disjunctions, inverse. For example, the ontology should express that
each right PostCentralGyrus is bounded exactly by one right CentralSulcus.
Besides, the rules cannot be expressed as role inclusion axioms (cf. rule (RM)
or the rules of the online Annex at http://www.med.univ-rennes1.fr/
~cgolb/Brain/annexes.pdf). Thus the required knowledge is not express-
ible in the EL++ or in OWL1.1.

– we defined subclasses of Orientation, e.g.; Posterior, Anterior etc. with indi-
vidual e.g., posteriorTo and used existential restrictions instead of enumer-
ation or hasValue restrictions, because KAON2 does not support nominals.

– KAON2 reasoner is based on the DL-safe rules assumption [2]. Although
the rules used for our system are not DL-safe, KAON2 provides the expected
answers for the reported experiments. Indeed, in these cases the rules were
fired, because given the initial facts asserted, their body was satisfied by
bindings their variables to known individuals. However, this approach is
not always relevant and situations may occur where solutions are missed
because of the existential construct. For example, a patch is defined with an
existential in the equivalent class expression (rhs). Hence, it may happen in
some cases that a rule expressing the propagation of a property from parts to
whole cannot be fired, because an instance of Patch is defined without being
connected to a known instance of gyrus by the relation partOf [3]. KAON2
does not draw all the consequences according to the first order semantics of
SWRL, but only consequences under the ”the DL-safe semantics”.

– all n-ary relations were transformed into binary relations, using reification
for example we defined an artificial class AttributedEntity for it. The ontol-
ogy was edited using Protégé rules editor which allows to edit only SWRL
rules and does not support ordinary predicates that are not DL predicates.
KAON2 extends the standard SWRL syntax and offers a swrl:PredicateAtom
that allows ordinary predicates, but according to the authors their SWRL
extensions were still experimental at the time of these experiments. It would
be preferred to have a language extension and tools allowing n-ary rela-
tions. N-ary relations is a general needs for example also encountered with
the Foundational Model of Anatomy ontology which exhibits more than
30 attributed relationships and where more than 2300 nested classes were
generated for their values [4].

– The heuristic rules section 2.1 were implemented in C + +. A declarative
approach was not possible with KAON2 since at the moment it does not
handle OWL DL datatypes or OWL1.1 user-defined datatypes and restric-
tions involving datatype predicates.

5 Conclusion

This paper reports the current stage of development of an hybrid system com-
bining numerical and symbolic techniques for brain MRI images description, and
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its present limitations. The method is based on an OWL DL ontology extended
with rules, and facts coming from numerical tools and SPAMs. Future work will
investigate how to overcome some of the work-arounds employed to circumvent
the limitations encountered with the representation and tools used. At the mo-
ment the method was only tested over a limited set of brain images that did not
exhibit a lesion. The experiments will be extended to more cases and to brain
images exhibiting a lesion in order to assess its robustness.Automatizing the
annotation of the semantic content of digital images presents promising perspec-
tives for new applications such as retrieval of similar cases for decision support,
or statistical medical studies in large populations.

Acknowledgement. We are grateful to Louis Collins of the Montreal Neurological
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Abstract. Rule based systems and agents are important applications of the Se-
mantic Web constructs such as RDF, OWL, and SWRL. While there are plenty 
of utilities that support ontology generation and utilization, rule acquisition is 
still a bottleneck as an obstacle to wide propagation of rule based systems. To 
automatically acquire rules from unstructured texts, we develop a rule acquisi-
tion framework that uses a rule ontology. The ontology can be acquired from 
the rule base of a similar site, and then is used for rule acquisition in the other 
sites of the same domain. The procedure of ontology-based rule acquisition 
consists of rule component identification and rule composition. The former uses 
stemming and semantic similarity to extract variables and values from the Web 
page and the latter uses the best-first search method in composing the variables 
and values into rules. 

1   Introduction 

Semantic Web research has developed many meta-languages that can express the 
characteristics of information on the Web pages in a machine understandable form. 
Typical languages include RDF(S) [3, 11], OWL [17], and SWRL [7].  The descrip-
tive ontology is extended to various types of logic [16], and reasoning tools are devel-
oped such as Jena [14], F-OWL [19], KAON [18], and OntoBroker [6]. These tools 
enable the Semantic Web to be widely used by software agents and rule based sys-
tems.  However, rule extraction from Web pages that consists of unstructured texts 
and tables is a challenging issue in the same way that knowledge acquisition has been 
the bottleneck of the knowledge based system. Many researchers attempted to extract 
object type ontology from Web documents [1, 5]. But extracting rules from unstruc-
tured natural language texts is more complicated than ontology acquisition [9].  

One of major applications that require rule acquisition is a comparison shopping 
portal. Comparison of various attributes of products in addition to price is currently 
required while general comparison shopping malls compare only price. However, the 
comparison of other factors usually requires more complicated reasoning process 
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rather than simple calculation. For example, calculation of shipping costs depends on 
different free shipping rules and various delivery options of each mall. Rule based 
reasoning is essential to provide a service that supports the enhanced comparison.  

Fig. 1 shows the framework of a comparison shopping portal based on a rule based 
reasoning system [9]. The portal builds a rule base with acquired rules about delivery 
options, shipping rules, and return policies from multiple shopping malls. Through a 
rule based reasoning system, the portal can provide an enhanced comparison service 
to customers. In this case, we should repeatedly acquire similar rules on shipping rates 
and return policies from multiple malls. The rules of the same domain are similar to 
each other in their shapes and contents. 

Customer

Comparison Shopping Portal

PowellsBarns&NobleAmazon

Rule Base

Rule-based Reasoning System

Fact BaseInference

Interface

Rule Acquisition
book price, shipping rates, 

free shipping rules, return policies

 

Fig. 1. Framework of Comparison Shopping Portal Based on Rule-Based System 

Fig. 2 shows an example of rule acquisition from a sample Web page of Barne-
sAndNoble.com (in short BN) in the left part to a rule of our format in the right part. 
It is easy to notice that variables and values of the rule came from the words of the 
Web page.  

IF   (item = books 
OR (item = CD and “returned status” = unopened) 
OR item = cassettes 
OR item = “VHS tapes”
OR item = DVDs 
OR item = “prints and posters”)

AND “returned status” = “original condition”
AND “packing slip” = Include
AND “returns form” = completed
AND “days of shipment” <= 30

THEN refund = full

IF   (item = books 
OR (item = CD and “returned status” = unopened) 
OR item = cassettes 
OR item = “VHS tapes”
OR item = DVDs 
OR item = “prints and posters”)

AND “returned status” = “original condition”
AND “packing slip” = Include
AND “returns form” = completed
AND “days of shipment” <= 30

THEN refund = full

Returning to Barnes & Noble.com

We'll refund your online purchase if you: 
•Return new books, unopened CDs, 

cassettes, VHS tapes, DVDs, and prints 
and posters in their original condition. 

•Include your packing slip and 
completed returns form. 

•Return within 30 days of the shipment
date listed on your packing slip.

 

Fig. 2. An Example of Rule Acquisition 

The basic idea of our approach comes from the fact that we repeatedly acquire 
similar rules from multiple sites. In that case, we can easily acquire rules from a site 
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by referencing previously acquired rules from the previous site. For example, if we 
have rules about return policies acquired from Amazon.com, we can use those rules in 
BN to detect similar rules. We designed and used a compact ontology generalized 
from the rules because the size of rules is getting bigger and it is difficult to refer the 
rules. The main objective of our research is to propose a rule acquisition procedure 
that automates repeated rule acquisition from similar sites by using the rule ontology.  

There are three assumptions in our approach. The first one is that similar sites 
should exist in the target domain to utilize acquired ontology. Our approach works 
well in the domain where rules are repeatedly acquired from multiple sites which have 
similar rules. There are several domains which are desirable for our approach such as 
terms of agreement in various shopping malls, insurance rates and policies in insur-
ance companies, and loan policies in banks. The second assumption is that the Web 
page should include practical and executable rules. The last assumption is that target 
application requires rule based reasoning. 

2   Overview of Ontology Based Rule Acquisition 

This section describes the idea of rule acquisition using the rule ontology. Rule acqui-
sition consists of rule component identification and rule composition from the ac-
quired rule components. We briefly describe the main idea of each step in Section 2.1 
and 2.2. Also, we describe brief design of our proposed rule ontology in Section 2.3. 

2.1   Rule Component Identification Using Ontology  

How can we use the rule ontology in identification of rule components such as vari-
ables and values? Let us assume that we acquired rules from Aamzon.com as shown 
in Fig. 3. In that case, we can possibly generalize those rules into an ontology and use 
it in rule acquisition from a Web page of BN as shown in Fig. 3. We use a frame ex-
pression to represent the ontology because it is simple and easy to understand, and 
moreover it can be automatically transformed to other ontology representations such 
as RDF and OWL. From the ontology in Fig. 3, we can easily recognize that refund 
and days of the shipment in Fig. 2 are variables and books, CDs, and VHS tapes are 
values. This example is very simple, but the ontology can provide more information. 
For example, it can help to detect omitted components from the Web pages. We can 
perceive that item is omitted in the Web page of Fig. 3 because books, CDs, and VHS 
tapes are values of item in the ontology of Fig. 3. Also, it is possible to assign vari-
ables to corresponding values because every value has its matching variable in the 
ontology. 

One of issues in rule component identification is the synonym issue. Even though 
the shape and content of rules are similar, different sites usually use different terms on 
the same meaning. They use synonyms in most cases, but they frequently use seman-
tically similar terms in different rule structures. For example, Amazon is using the 
concept region for shipping destinations, but Powells is using each country in every 
shipping rate rules. Country is not the synonym of region, but semantically similar to 
region. Therefore, we use semantic similarity measure [4] in addition to synonyms 
when we identify variables and values to increase recall rate. We developed our own 
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{{ “days of the shipment”
IS-A: Variable

Values: 30  }}
{{ “Returned status”

IS-A: Variable
Values: Opened “Obvious sign of use”

“Original condition” }}
{{ Item 
IS-A: Variable
Values: Book CD DVD “VHS tape” DVD }}
{{ Refund
IS-A: Variable
Values: Full Partial }}

{{ “days of the shipment”
IS-A: Variable

Values: 30  }}
{{ “Returned status”

IS-A: Variable
Values: Opened “Obvious sign of use”

“Original condition” }}
{{ Item 
IS-A: Variable
Values: Book CD DVD “VHS tape” DVD }}
{{ Refund
IS-A: Variable
Values: Full Partial }}

IF “Days of the shipment” >= 30 
OR (Item = BOOK AND 

“Returned status” = “Obvious signs of use”)
OR ((Item = CD OR Item = DVD OR Item = “VHS Tape”) 

AND “Returned status”= Opened)
OR “Returned status” != “Original condition”

THEN  Refund = Partial

IF “Days of the shipment” >= 30 
OR (Item = BOOK AND 

“Returned status” = “Obvious signs of use”)
OR ((Item = CD OR Item = DVD OR Item = “VHS Tape”) 

AND “Returned status”= Opened)
OR “Returned status” != “Original condition”

THEN  Refund = Partial

Rules in Amazon.comOntology from Amazon.com

Extract

Rule acquisition in Barnes & Noble.com

Apply

 

Fig. 3. An Example of Ontology and Rule Component Identification 

semantic similarity measure [4] while there are several measures such as Resnik [15] 
and Lin [10]. 

2.2   Composing Rules from Variables Through the Best-First Search 

The basic idea of rule composition is using patterns of rules in similar systems. We 
can extract an ontology by generalizing rules of another system. In that case, several 
rules can be generalized into one rule of the ontology. For example, 102 rules in the 
rule base of Amazon.com were generalized into 21 rules of the rule ontology in our 
experiment. Fig. 4 shows an example of a rule in the ontology. If we find a similar 
pattern of this rule from the identified variables in text, we can compose them into a 
rule by using the best-first search [13]. For example, if there are item, refund, and 
days of the shipment variables in the Web page, we can compose Return Policy Rule 
from those variables with the rule ontology in Fig. 4. The best-first search algorithm 
assigns variable instances one after another to a rule of the ontology by making a 
search tree.  

 
{{ “Refund Policy Rule” 

  IS-A: Rule 
  IF: “days of the shipment” Item “Returned status” 
  THEN: Refund  }}

 

Fig. 4. An Example of Rule Ontology 
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There are several issues on composing rules through the best-first search as  
follows: 

2.2.1   Complexity of Rule Composition 
There can be many combinations for the cases of assigning variables to rule 
candidates that are extracted from the ontology. Therefore we need to reduce the 
complexity of choosing the next variable instance to assign. We imported the concept, 
variable ordering in the Constrained Heuristic Search [2]. One popular variable 
ordering heuristic is to choose the variable with the fewest number of remaining 
possible values [2]. We decided to adopt the same heuristic in our approach. When we 
assign variable instances to each rule, we start from a variable which has the smallest 
number of matching instances because it can reduce the number of options in the 
beginning. We call this heuristic variable ordering. In addition to setting the variable 
order in each rule, we should decide the order of candidate rules. We start from a rule 
which has the smallest number of combinations for assigning variable instances to the 
rule. We call this procedure rule ordering. 

2.2.2   Evaluation Function of the Best-First Search 
We need an appropriate method for the evaluation function of the best-first search. How 
can we evaluate the degree of suitability of a variable instance to a rule? We make an 
evaluation function under the assumption that variables comprising a rule are located in 
the neighborhood in text. Therefore, if a variable instance is closer to the already chosen 
instances for a rule than the other set of instances, we assign the instance to the rule. 
This geographic assumption plays a very important role in our approach. 

2.3   Design of Rule Ontology 

The ontology that is used in our approach is named OntoRule. OntoRule is domain 
specific knowledge that provides information about rule components and structures. 
While the ontology for rule component identification consists of variables, values and 
the relationship between them, the ontology for rule composition requires generalized 
rule structures as shown in Fig. 4. It includes variables for the IF part and THEN part 
of each rule. That is, IF and THEN slots of Rule class represents relationships be-
tween rules and variables. We excluded connectives like AND and OR from OntoRule 
because it is hard to represent the complex nested structure of connectives in simple 
frame representation, and there is no effect of generalization if we represent all con-
nectives in the ontology. 

In another viewpoint, it is possible to directly use rules of the previous system instead 
of the proposed ontology. But, it requires a large space and additional processes to util-
ize information on rules, while OntoRule is a generalized compact set of information for 
rule acquisition. That is the reason we use OntoRule instead of the rules themselves. 

3   Ontology Based Rule Acquisition Procedure 

In this section, we propose a procedure which automatically acquires rules by using 
OntoRule, and besides, we describe a brief summary of detailed rule component iden-
tification procedure in Section 3.2 and rule composition procedure in Section 3.3. 
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3.1   Overall Rule Acquisition Procedure 

Fig. 5 shows the overall rule acquisition process. In step 1, the rule ontology is 
generated from a rule base which is acquired in another site. In step 2, the knowl-
edge engineer selects Web pages for rule acquisition. In step 3, the tool named 
RuleMiner automatically identifies variables and values from the Web page using 
OntoRule and creates the first rule draft. In step 4, RuleMiner automatically gener-
ates rules with IF and THEN statements by composing the identified variables and 
values. A graph search method with the property of A* algorithm [13] is developed 
for this purpose. However, the generated rules may be incomplete. Therefore, the 
knowledge engineer needs to refine the second rule draft to make it complete in  
step 5. 

Ontology Rules

Previously 
acquired 

rules from 
other sites

RuleMiner

Knowledge
Engineer

Knowledge
Engineer

Knowledge
Engineer

Knowledge
Engineer

 

Fig. 5. Overall Rule Acquisition Process Using Ontology 

3.2   Rule Component Identification Procedure 

The goal of rule component identification is to elicit variables and values by compar-
ing parsed words of the given text with the variables and values of the given rule 
ontology. For the first step, we expanded the rule ontology by adding synonyms of 
each term by using WordNet [12] as shown in Fig. 6 that describes the step 3 of Fig. 5 
in detail. To implement the procedure, we transformed the frame-based ontology into 
OWL and parsed it through Jena API. After that, we applied the stemming algorithm 
[8] to the expanded ontology to normalize the terms in step 2. Also we parsed and 
stemmed the Web page for rule acquisition in step 3. In the comparison between the 
terms of the ontology and the terms of the Web page, we used semantic matching 
instead of simple string comparison as discussed in Section 2.1.  

To find the semantic similarity between two terms, we used the hyponym structure 
of WordNet. The distance between two terms in the hyponym hierarchy is the main 
factor of our semantic similarity. We do not include the details of the algorithm [4] 
not to lose our focus. 
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Ontology

Expanded
& Stemmed

Ontology

WordNet

 

Fig. 6. Extracting Variables and Values by Using Ontology 

3.3   Rule Composition Through the Best-First Search 

This section describes the best-first search algorithm that composes rules from ex-
tracted rule components by using the rule ontology. The input of the best-first search 
(BFS) algorithm is a set of identified variable instances, VI={VI1, VI2, …, VIi, …, VIn} 
in the given Web page. The output is a set of rule instances, RI={ RI1, RI2, …, RIp, …, 
RIq}, where RIp is a set of assigned variable instances to the rule. The ontology that is 
used in rule composition is made up of rule candidates from OntoRule, RC={R1, R2, 
…, Rj, …,Rl}, where a rule candidate, Rj is {Vj1, Vj2, …, Vjk, …, Vjm}. 

3.3.1   Rule Ordering and Variable Ordering 
Before rule ordering, we need to extract rule candidates from OntoRule. If variables 
in Rj exist in VI, Rj is extracted for rule candidates. The first step of rule ordering is to 
calculate the number of possible combinations of variable instance assignments for 
each Rj with the following formula: 
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The last step of rule ordering is to sort rules of RC with increasing order of NC(). 
Once the rule order is determined in rule ordering, the next step is making the order of 
variables within each rule. We use the same heuristic by choosing the variable with 
the smallest number of instances. After that, we sort variables within each rule with 
increasing order of Count(). By integrating RuleOrder and VariableOrder, we can 
generate TotalOrder(RC). TotalOrder(RC) is a sorted list of rules that are sorted vari-
able lists. BFS proceeds in the order of variables in TotalOrder(RC). 

3.3.2   Evaluation of Composed Rules 
As discussed in Section 2.2, the suitability of a variable instance for a rule can be 
measured based on the distance between the variable instance and the already 
assigned instances. This distance can be calculated with the variance of positions of 
variable instances.  

A low variance means that the instances gather around one place in the text. There-
fore, the evaluation function of a current variable instance n for Rj is denoted as 
Var(n, Rj), the variance of the set containing the instance n and already assigned  
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instances to Rj. A* algorithm evaluates nodes by combining g(n), the cost to reach the 
node, and h(n), the cost to get the goal from the node, as f(n) = g(n) + h(n). Therefore, 
in order to calculate g(n), we should evaluate variances of all rules in the current path 
in addition to the current rule Rj. The cost to reach the node can be denoted as follows 
where Rr is the current rule in TotalOrder: 

∑
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==
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),( ))(()(  

We define the expected cost from the current node h(n) with the sum of minimum 
variances of the remaining rules as follows: 
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Comb(n, Rj) means possible combinations for the rule Rj that locates behind the 
current instance n in TotalOrder, and MinVar means a minimum variance of them. 
Because h(n) is always smaller than h*(n) that is the true cost, the evaluation function 
f(n) satisfies A* algorithm. 

3.3.3   The Best-First Search Algorithm for Rule Composition 
Once the search order and evaluation function are determined, the best-first search 
algorithm is simple. In the first step, the algorithm extracts variable instances that 
match the first variable of TotalOrder(RC) and put them into OPEN. In the second 
step, it chooses the most suitable variable instance for the current variable of the 
candidate rule from OPEN with the evaluation function f(n) and assigns it to the 
current candidate rule. After that, we generate the next variable instances with 
TotalOrder(RC), put them into OPEN, and go back to the second step. If 
TotalOrder(RC) is empty, the algorithm stops with the assigned variable instances to 
each candidate rule.  

3.3.4   Assigning IF and THEN 
This step is very simple. If an identified variable belongs to an IF part of the selected 
rule, we assign IF to the variable. We cannot assign IF or THEN to variables and 
values which are not in the selected rule of ontology. 

4   Experiment Using Ontology in Rule Identification 

This section shows the performance of our approach proposed in Section 3 by meas-
uring the effect of automatic rule acquisition using OntoRule. In order to start the 
experiment, we first constructed the ontology from Amazon.com. We applied this 
ontology on acquiring rules from two online bookstores, BarnesAndNoble.com (in 
short BN) and Powells.com. 

We use two performance measures to evaluate the performance of our approach. 
The first performance measure is precision, which is calculated by dividing the num-
ber of correct recommendations through ontology by the number of displayed rec-
ommendations through ontology. The second performance measure is recall, which is 
obtained by dividing the number of correct recommendations through ontology by the 
total number of true terms that should be identified. 
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Table 1. Experiment Results of Rule Acquisition 

Variable Value 
 

Precision Recall Precision Recall 
BN 70.88% 83.33% 88.55% 76.76% 

Powells 84.78% 81.25% 99.65% 99.11% 
Total 72.96% 82.96% 97.45% 94.16% 

We obtained satisfactory performance of using ontology in rule component identi-
fication as shown in Table 1. Precision and recall of values in Powells are very high at 
99.65% and 99.11% because Powells uses large tables for shipping rates which are 
well structured and easy to match with the ontology.  

One major limitation of the evaluation is that there are only two sites in our ex-
periment. The objective in this experiment is not to empirically verify the validity of 
our approach, but to show an example where our approach works. Therefore, an 
extended experiment with enough Web sites is surely required to verify and general-
ize our approach, so we are planning to do it. Another major limitation is that the 
above results came from just one domain of the comparison shopping portal for 
online bookstores. We should extend our approach to various domains. 

5   Conclusions 

To reduce the knowledge engineer’s manual work in rule acquisition, we proposed a 
rule acquisition procedure using an ontology, named OntoRule, that includes informa-
tion about the rule components and its structures. The procedure consists of rule com-
ponent identification step and rule composition step. We used stemming and semantic 
similarity in the former and developed a Graph Search method with the property of 
A* Algorithm in the latter. Also, we demonstrate the possibility of our ontology-
based rule acquisition approach with an experiment. We expect that the results show 
the potential of this approach even though the experiment is very limited in the  
domain and the number of sites.  

There are several challenging research issues in order to meet the ultimate goal of 
our research. First, we need to test with many sites to understand the possibility of 
automatic rule acquisition. Second, we need to extend our research into various do-
mains because the performance may depend upon the nature of Web pages in each 
domain. We expect that insurance rates and policies of insurance companies, and loan 
policies of banks would be good examples of such domain. 
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Camino de Vera s/n, Apdo. 22012, 46071 Valencia, Spain

{alpuente, pojeda, dromero}@dsic.upv.es
2 Dip. Matematica e Informatica

Via delle Scienze 206, 33100 Udine, Italy
demis@dimi.uniud.it

3 Dip. di Scienze Matematiche e Informatiche
Pian dei Mantellini 44, 53100 Siena, Italy

moreno.falaschi@unisi.it

Abstract. In this paper, we present the rewriting-based, Web verifica-
tion service WebVerdi-M, which is able to recognize forbidden/incorrect
patterns and incomplete/missing Web pages. WebVerdi-M relies on a
powerful Web verification engine that is written in Maude, which auto-
matically derives the error symptoms. Thanks to the AC pattern match-
ing supported by Maude and its metalevel facilities, WebVerdi-M enjoys
much better performance and usability than a previous implementation
of the verification framework. By using the XML Benchmarking tool
xmlgen, we develop some scalable experiments which demonstrate the
usefulness of our approach.

1 Introduction

The automated management of data-intensive Web sites is an area to which
rule-based technology has a significant potential to contribute. It is widely ac-
cepted today that declarative representations are the best way to specify the
structural aspects of Web sites as well as many forms of Web-site content. As an
additional advantage, rule-based languages such as Maude [8] offer an extremely
powerful, rewriting-based “reasoning engine” where the system transitions are
represented/derived by rewrite rules indicating how a configuration is trans-
formed into another.

In previous work [2,4], we proposed a rewriting-based approach to Web-site
verification and repair. In a nutshell, our methodology w.r.t. a given formal
specification is applied to discover two classes of important, semantic flaws in
Web sites. The first class consists of correctness errors (forbidden information
that occurs in the Web site), while the second class consist of completeness
errors (missing and/or incomplete Web pages). This is done by means of a
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novel rewriting-based technique, called partial rewriting, in which the traditional
pattern matching mechanism is replaced by a suitable technique based on the
homeomorphic embedding relation for recognizing patterns inside semistructured
documents. The new prototype WebVerdi-M relies on a strictly more powerful
Web verification engine written in Maude [8] which automatically derives the er-
ror symptoms of a given Web site. Thanks to the AC pattern matching supported
by Maude and its metalevel features, we have significantly improved both the
performance and the usability of the original system. By using SOAP messages
and other Web-related standards, a Java Web client that interacts with Web
verification service has been made publicly available within the implementation.

Although there have been other recent efforts to apply formal techniques
to Web site management [10,12,14,18], only few works addressed the semantic
verification of Web sites before. The key idea behind WebVerdi-M is that rule-
based techniques can support in a natural way not only intuitive, high level Web
site specification, but also efficient Web site verification techniques.

VeriWeb [18] explores interactive, dynamic Web sites using a special browser
that systematically explores all paths up to a specified depth. The user first spec-
ifies some properties by means of SmartProfiles, and then the verifier traverses
the considered Web site to report the errors as sequences of Web operations that
lead to a page which violates a property. Navigation errors and page errors can
be signaled, but tests are performed only at the http-level. In [14], a declarative
verification algorithm is developed which checks a particular class of integrity
constraints concerning the Web site’s structure, but not the contents of a given
instance of the site. In [10], a methodology to verify some semantic constraints
concerning the Web site contents is proposed, which consists of using inference
rules and axioms of natural semantics. The framework xlinkit [12,19] allows
one to check the consistency of distributed, heterogeneous documents as well
as to fix the (possibly) inconsistent information. The specification language is a
restricted form of first order logic combined with Xpath expressions [23] where
no functions are allowed.

The paper is organized as follows. Section 2 presents some preliminaries, and
in Section 3 we briefly recall the rewriting-based, Web-site verification technique
of [2]. In Section 4, we discuss the efficient implementation in Maude (by means
of AC pattern matching) of one of the key ingredients of our verification engine:
the homeomorphic embedding relation, which we use to recognize patterns within
semi-structured documents. Section 5 briefly describes the service-oriented archi-
tecture of our verification prototype WebVerdi-M. Finally, Section 6, we present
an experimental evaluation of the system on a set of benchmarks which shows
impressive performance (e.g. less than a second for evaluating a tree of some
30,000 nodes). An extended version of this work can be found in [3].

2 Preliminaries

By V we denote a countably infinite set of variables and Σ denotes a set of func-
tion symbols (also called operators), or signature. We consider varyadic signatures
as in [9] (i.e., signatures in which symbols do not have a fixed arity).
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τ(Σ,V) and τ(Σ) denote the non-ground term algebra and the term algebra
built on Σ ∪ V and Σ, respectively. Terms are viewed as labelled trees in the
usual way. Given a term t, we say that t is ground, if no variable occurs in t.
A substitution σ ≡ {X1/t1, X2/t2, . . .} is a mapping from the set of variables V
into the set of terms τ(Σ,V) satisfying the following conditions: (i) Xi �= Xj ,
whenever i �= j, (ii) Xiσ = ti, i = 1, ..n, and (iii) Xσ = X , for all X ∈ V \
{X1, . . . , Xn}. An instance of a term t is defined as tσ, where σ is a substitution.
By Var(s) we denote the set of variables occurring in the syntactic object s.
Syntactic equality between objects is represented by ≡.

3 Rule-Based Web Site Verification

In this section, we briefly recall the formal verification methodology proposed in
[2], which allows us to detect forbidden/erroneous information as well as missing
information in a Web site. This methodology is able to recognize and exactly
locate the source of a possible discrepancy between the Web site and the prop-
erties required in the Web specification. An efficient and elegant implementation
in Maude of such a methodology is described in Section 4.

We assume a Web page to be a well-formed XML document [22], since there
are plenty of programs and online services that are able to validate XML syntax
and perform link checking (e.g. [24],[21]). Moreover, as XML documents are
provided with a tree-like structure, we can straightforwardly model them as
ground Herbrand terms of a given term algebra.

The Web specification language. A Web specification is a triple (IN , IM , R),
where IN and IM are a finite set of correctness and completeness rules, and the
set R contains the definition of some auxiliary functions.

The set IN describes constraints for detecting erroneous Web pages (correct-
Ness rules). A correctness rule has the following syntax: l ⇀ error | C where l is
a term, error is a reserved constant, and C is a (possibly empty) finite sequence
(wich could contains membership tests of the form X ∈ rexp w.r.t. a given
regular language rexp;1 and/or equations/inequalities over terms). When C is
empty, we simply write l ⇀ error. Informally, the meaning of a correctness rule
is the following: whenever (i) a “piece” of a given Web page can be “recognized”
to be an instance lσ of l, and (ii) the corresponding instantiated condition Cσ
holds, then Web page p is marked as an incorrect page.

The third set of rules IM specifes some properties for discovering incom-
plete/missing Web pages (coMpleteness rules). A completeness rule is defined as
l ⇀ r 〈q〉 where l and r are terms and q ∈ {E, A}. Completeness rules of a Web
specification formalize the requirement that some information must be included
in all or some pages of the Web site. We use attributes 〈A〉 and 〈E〉 to distinguish
“universal” from “existential” rules, as explained below. Right-hand sides r of
completeness rules can contain functions, which are defined in R. In addiction,
1 Regular languages are represented by means of the usual Unix-like regular expression

syntax.
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some symbols in the right-hand sides of the rules may be marked by means of
the symbol �. Marking information of a given rule r is used to select the subset
of the Web site in order to check the condition formalized by r. Intuitively, the
interpretation of a universal rule (respectively, an existential rule) w.r.t. a Web
site W is as follows: if (an instance of) l is “recognized” in W , (an instance of)
the irreducible form of r must also be “recognized” in all (respectively, some) of
the Web pages that embed (an instance of) the marked structure of r.

Web Verification Methodology. Diagnoses are carried out by running Web
specifications on Web sites. The operational mechanism is based on a novel,
flexible matching technique [2] that is able to “recognize” the partial structure of
a term (Web template) within another and select it by computing homeomorphic
embeddings (cf. [16]) of Web templates within Web pages.

Homeomorphic embedding relations allow us to verify whether a template
is somehow “enclosed” within another one. Our embedding relation � closely
resembles the notion of simulation (for the formal definition, see [2]), which
has been widely used in a number of works about querying, transformation, and
verification of semistructured data (cf. [6,1,15,5]). Let us illustrate the embedding
relation � by means of a rather intuitive example.

Example 1. Consider the following Web templates (called s1 and s2, respec-
tively): hpage(surname(Y ), status(prof), name(X), teaching) and
hpage( name(mario), surname(rossi), status(prof), teaching(course(logic1),

course(logic2)), hobbies(hobby(reading), hobby(gardening)))
Note that s1 � s2, since the structure of s1 can be recognized inside the structure
of s2, while s2 �� s1.

It is important to have an efficient implementation of homeomorphic embedding
because it is used repeatedly during the verification process as described in the
following.

First, by using the homeomorphic embedding relation �, we check whether
the left-hand side l of some Web specification rule is embedded into a given
page p of the considered Web site. When the embedding test l � p succeeds, by
extending the proof, we construct the biggest substitution2 σ for the variables in
V ar(l), such that lσ � p. Then, depending on the nature of the Web specification
rule (correction or completeness rule), it is as follows:

(Correction rule) evaluating the condition of the rule (instantiated by σ); a
correctness error is signalled in the case when the error condition is fulfilled.

(Completeness rule) by a new homeomorphic embedding test, checking
whether the right-hand side of the rule (instantiated by σ) is recognized
in some page of the considered Web site. Otherwise, a completeness error is
signalled. Moreover, from the incompleteness symptom computed so far, a
fixpoint computation is started in order to discover further missing informa-
tion, which may involve the execution of other completeness rules.

2 The substitution σ is easily obtained by composing the bindings X/t, which can be
recursively gathered during the homeomorphic embedding test X � t, for X ∈ l and
t ∈ p.
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4 Verifying Web Sites Using Maude

Maude is a high-performance reflective language supporting both equational
and rewriting logic programming, which is particularly suitable for developing
domain-specific applications [20,11]. In addiction, the Maude language is not
only intended for system prototyping, but it has to be considered as a real
programming language with competitive performance. In the rest of the section,
we recall some of the most important features of the Maude language which we
have conveniently exploited for the optimized implementation of our Web site
verification engine.

Equational attributes. Let us describe how we model (part of) the internal
representation of XML documents in our system. The chosen representation
slightly modifies the data structure provided by the Haskell HXML Library [13]
by adding commutativity to the standard XML tree-like data representation.
In other words, in our setting, the order of the children of a tree node is not
relevant: e.g., f(a, b) is “equivalent” to f(b, a).

fmod TREE-XML is

sort XMLNode .

op RTNode : -> XMLNode . -- Root (doc) information item

op ELNode _ _ : String AttList -> XMLNode . -- Element information item

op TXNode _ : String -> XMLNode . -- Text information item

--- ... definitions of the other XMLNode types omitted ...

sorts XMLTreeList XMLTreeSeq XMLTree .

op Tree (_) _ : XMLNode XMLTreeList - > XMLTree .

subsort XMLTree < XMLTreeSeq .

op _,_ : XMLTreeSeq XMLTreeSeq -> XMLTreeSeq [comm assoc id:null] .

op null : -> XMLTreeSeq .

op [_] : XMLTreeSeq -> XMLTreeList .

op [] : -> XMLTreeList .

endfm

In the previous module, the XMLTreeSeq constructor _,_ is given the equa-
tional attributes comm assoc id:null, which allow us to get rid of parentheses
and disregard the ordering among XML nodes within the list. The significance of
this optimization will be clear when we consider rewriting XML trees with AC
pattern matching.

AC pattern matching. The evaluation mechanism of Maude is based on
rewriting modulo an equational theory E (i.e. a set of equational axioms), which
is accomplished by performing pattern matching modulo the equational theory
E. More precisely, given an equational theory E, a term t and a term u, we say
that t matches u modulo E (or that t E-matches u) if there is a substitution σ
such that σ(t)=E u, that is, σ(t) and u are equal modulo the equational theory
E. When E contains axioms for associativity and commutativity of operators,
we talk about AC pattern matching. AC pattern matching is a powerful match-
ing mechanism, which we employ to inspect and extract the partial structure of
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a term. That is, we use it directly to implement the notion of homeomorphic
embedding of Section 3.

Metaprogramming. Maude is based on rewriting logic [17], which is reflective
in a precise mathematical way. In other words, there is a finitely presented rewrite
theory U that is universal in the sense that we can represent in U (as a data)
any finitely presented rewrite theory R (including U itself), and then mimick in
U the behavior of R. We have used the metaprogramming capabilities of Maude
to implement the semantics of correctness as well as completeness rules (e.g.
implementing the homeomorphic embedding algorithm, evaluating conditions of
conditional rules, etc.). Namely, during the partial rewriting process, functional
modules are dynamically created and run by using the meta-reduction facilities
of the language.

Now we are ready to explain how we implemented the homeomorphic embed-
ding relation of Section 3, by exploiting the aforementioned Maude high-level
features.

Homeomorphic embedding implementation. Let us consider two XML
document templates l and p. The critical point of our methodology is to (i)
discover whether l � p (i.e. l is embedded into p); (ii) find the substitution σ
such that lσ is the instance of l recognized inside p, whenever l � p.

Given l and p, our proposed solution can be summarized as follows. By using
Maude metalevel feactures, we first dynamically build a module M that contains
a single rule of the form

eq l = sub(”X1”/X1), . . . , sub(”Xn”/Xn), Xi ∈ Var(l), i = 1, . . . n,

where sub is an associative operator used to record the substitution σ that we
want to compute. Next, we try to reduce the XML template p by using such
a rule. Since l and p are internally represented by means of the binary con-
structor _,_ that is given the equational attributes comm assoc id:null (see
Section 4), the execution of module M on p essentially boils down to computing an
AC-matcher between l and p. Moreover, since AC pattern matching directly im-
plements the homeomorphic embedding relation. The execution of M corresponds
to finding all the homeomorphic embeddings of l into p (recall that the set of
AC matchers of two compatible terms is not generally a singleton). Additionally,
as a side effect of the execution of M, we obtain the computed substitution σ for
free as the sequence of bindings for the variables Xi, i = 1, . . . , n which occur in
the instantiated rhs

sub(”X1”/X1)σ, . . . , sub(”Xn”/Xn)σ, Xi ∈ Var(l), i = 1, . . . n,

of the dynamic rule after the partial rewriting step.

Example 2. Consider again the XML document templates s1 and s2 of Example 1.
We build the dynamic module M containing the rule

eq hpage(surname(Y), status(prof), name(X), teaching) = sub(”Y”/Y), sub(”X”/X) .

Since s1 � s2, there exists an AC-match between s1 and s2 and, hence, the result
of executing M against the (ground) XML document template s2 is the computed
substitution: sub(”Y”/rossi), sub(”X”/mario).
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5 Prototype Implementation

The verification methodology presented so far has been implemented in the pro-
totype WebVerdi-M (Web Verification and Rewriting for Debugging Internet sites
with Maude). In developing and deploying the system, we fixed the following re-
quirements: 1) define a system architecture as simple as possible, 2) make the
Web verification service available to every Internet requestor, and 3) hide the
technical details from the user. In order to fulfill the above requirements, we
developed the Web verification system WebVerdi-M as a Web service.

5.1 WebVerdi-M Architecture

WebVerdi-M is a service-oriented architecture that allows one to access the core
verification engine Verdi-M as a reusable entity. WebVerdi-M can be divided into
two layers: front-end and back-end. The back-end layer provides web services to
support the front-end layer. This architecture allow clients on the network to
invoke the Web service functionality through the available interfaces.

Figure 1 illustrates the overall architecture of the system. For the reader
interested in more detail, the types of messages and the specific message exchange
patterns that are involved in interacting with WebVerdi-M can be found in [3].

Fig. 1. Components of WebVerdi-M Fig. 2. WebVerdiClient Snapshot

WebVerdiService. Our web service exports six operations that are network-
accessible through standardized XML messaging. The Web service acts as a
single access point to the core engine Verdi-M. Following the standards, the
architecture is also platform and language independent so as to be accessible via
scripting environment as well as via client applications across multiple platforms.

XML API. In order for successful communications to occur, both the Web-
VerdiService and WebVerdiClient (or any user) must agree to a common format
for the messages being delivered so that they can be properly interpreted at each
end. The WebVerdiService Web service is developed by defining an API that en-
compasses the executable library of the core engine. This is achieved by making
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use of Oracle JDeveloper, including the generation of WSDL for making the
API available. The OC4J Server (the web server integrated in Oracle JDevel-
oper) handles all procedures common to Web service development. Synthesized
error symptoms are also encoded as XML documents in order to be transferred
from the WebVerdiService Web service to client applications as an XML response
by means of the SOAP protocol.

Verdi-M. Verdi-M is the most important part of the tool. Here is where the
verification methodology is implemented. This component is implemented in
Maude language and is independent of the other system components.

WebVerdiClient. WebVerdiClient is a Web client that interacts with the Web
service to use the capabilities of Verdi-M. Our main goal was to provide an
intuitive and friendly interface for the user. WebVerdiClient is provided with a
versatile, new graphical interface that offers three complementary views for both
the specification rules and the pages of the considered Web site: the first one is
based on the typical idea of accessing contents by using folders trees; the second
one is based on XML, and the third one is based on term algebra syntax. A
snapshot of WebVerdiClient is shown in Figure 2.

DB. The WebVerdiService Web service needs to transmit abundant XML data
over the Web to and from client applications. In order to avoid overhead and to
provide better performance to the user, we use a local MySql data base where
the Web site and Web errors are temporarily stored at the server side.

6 Experimental Evaluation

In order to evaluate the usefulness of our approach in a realistic scenario (that
is, for sites whose data volume exceeds toy sizes), we have benchmarked our
system by using several correctness as well as completeness rules of different
complexity for a number of XML documents randomly generated by using the
XML documents generator xmlgen available within the XMark project [7]. The
tool xmlgen is able to produce a set of XML data, each of which is intended to
challenge a particular primitive of XML processors or storage engines by using
different scale factors.

Table 1 shows some of the results we obtained for the simulation of three
different Web specifications WS1, WS2 and WS3 in five different, randomly
generated XML documents. Specifically, we tuned the generator for scaling fac-
tors from 0.01 to 0.1 to match an XML document whose size ranges from 1Mb
–corresponding to an XML tree of about 31000 nodes– to 10Mb –corresponding
to an XML tree of about 302000 nodes. An exhaustive evaluation, including
comparison with related systems, can be found in

http://www.dsic.upv.es/users/elp/webverdi-m/.
Both Web specifications WS1 and WS2 aim at checking the verification power

of our tool regarding data correctness, and thus include only correctness rules.
The specification rules of WS2 contain more complex and more demanding
constraints than the ones fomalized in WS1, with involved error patterns to
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match, and conditional rules with a number of membership tests and functions
evaluation. The Web specification WS3 aims at checking the completeness of
the randomly generated XML documents. In this case, some critical complete-
ness rules have been formalized which recognize a significant amount of missing
information.

Table 1. Verdi-M Benchmarks

Size Nodes
Scale Time
factor WS1 WS2 WS3

1 Mb 30, 985 0.01 0.930 s 0.969 s 165.578 s

3 Mb 90, 528 0.03 2.604 s 2.842 s 1768.747 s

5 Mb 150, 528 0.05 5.975 s 5.949 s 4712.157 s

8 Mb 241, 824 0.08 8.608 s 9.422 s 12503.454 s

10 Mb 301, 656 0.10 12.458 s 12.642 s 21208.494 s

The results shown in Table 1 were obtained on a personal computer equipped
with 1Gb of RAM memory, 40Gb hard disk and a Pentium Centrino CPU clocked
at 1.75 GHz running Ubuntu Linux 5.10.

Let us briefly comment our results. Regarding the verification of correctness,
the implementation is extremely time efficient, with elapsed times scaling lineary.
Table 1 shows that the execution times are small even for very large documents
(e.g. running the correctness rules of Web specification WS1 over a 10Mb XML
document with 302000 nodes takes less than 13 seconds). Concerning the com-
pleteness verification, the fixpoint computation which is involved in the evaluation
of the completeness rules typically burdens the expected performance (see [2]),
and we are currently able to process efficiently XML documents whose size is not
bigger than 1Mb (running the completeness rules of Web specification WS3 over
a 1Mb XML document with 31000 nodes takes less than 3 minutes).

Finally, we want to point out that the current Maude implementation of
the verification system supersedes and greatly improves our preliminary system,
called GVerdi[2,4], that was only able to manage correctness for small XML
repositories (of about 1Mb) within a reasonable time. We are currently working
on further improving the performance of our system.
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Abstract. Trust is a vital feature for the Semantic Web: If users (humans and 
agents) are to use and integrate system answers, they must trust them. Thus, sys-
tems should be able to explain their actions, sources, and beliefs, and this issue is 
the topic of the proof layer in the design of the Semantic Web. This paper pre-
sents the design of a system for proof explanation on the Semantic Web, based 
on defeasible reasoning. The basis of this work is the DR-DEVICE system that is 
extended to handle proofs. A critical aspect is the representation of proofs in an 
XML language, which is achieved by a RuleML language extension. 

1   Introduction 

The development of the Semantic Web proceeds in steps, each step building a layer 
on top of another. At present, the highest layer that has reached sufficient maturity is 
the ontology layer in the form of the description logic-based language OWL [8]. The 
next step in the development of the Semantic Web will be the logic and proof layers. 
The implementation of these two layers will allow the user to state any logical princi-
ples, and permit the computer to infer new knowledge by applying these principles on 
the existing data. Rule systems appear to lie in the mainstream of such activities. 

Many recent studies have focused on the integration of rules and ontologies, and 
various solutions have been proposed. The Description Logic Programs is the ap-
proach followed in [13]; DLPs derive from the intersection of Description Logics and 
Horn Logic, and enable reasoning with available efficient LP inferencing algorithms 
over large-scale DL ontologies. We also distinguish the approaches presented in [16] 
and [20], which study the integration of Description Logics and Datalog rules. Two 
representative examples of rule languages for the Semantic Web are TRIPLE [22] and 
SWRL [14]. They both provide a model for rules on the Semantic Web. TRIPLE is 
based on F-Logic and provides support for RDFS and a subset of OWL Lite, while 
SWRL extends OWL DL with Horn-style rules. 

Different, but equally interesting research efforts, deal with the standardization of 
rules for the Semantic Web. Works in this direction include (a) the RuleML Markup 
Initiative [9], whose ultimate goal is to develop a canonical Web language for rules 
using XML markup, formal semantics, and efficient implementations; and (b) the re-
search conducted by the Rule Interchange Format (RIF) Working Group, which was 
recently launched by W3C. 
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Apart from classical rules that lead to monotonic logical systems, recently re-
searchers started to study systems capable of handling conflicts among rules and rea-
soning with partial information. Recently developed nonmonotonic rule systems for 
the Semantic Web include DR-Prolog [1], SweetJess [12], dlvhex [10] and DR-
DEVICE [5], a defeasible reasoning system for the Semantic Web, implemented in 
CLIPS, which integrates well with RuleML and RDF. 

The upper levels of the Semantic Web have not been researched enough and con-
tain critical issues, like accessibility, trust and credibility. The next step in the archi-
tecture of the Semantic Web is the proof layer and little has been written and done for 
this layer. The main difference between a query posed to a traditional database system 
and a semantic web system is that the answer in the first case is returned from a given 
collection of data, while for the semantic web system the answer is the result of a rea-
soning process. While in some cases the answer speaks for itself, in other cases the 
user will not be confident in the answer unless he/she can trust the reasons why the 
answer has been produced. In addition it is envisioned that the semantic web is a  
distributed system with disparate sources of information. Thus a semantic web an-
swering system, to gain the trust of a user must be able, if required, to provide an ex-
planation or justification for an answer. Since the answer is the result of a reasoning 
process, the justification can be given as a derivation of the conclusion with the 
sources of information for the various steps. 

In this work we describe the design of an extension of the nonmonotonic rules sys-
tem DR-DEVICE, to extract and present explanations of answers. This work can be 
viewed as a contribution to the realization of a proof layer for a nonmonotonic rule 
language on the semantic web. 

2   Defeasible Logics 

The root of defeasible logics lies on research in knowledge representation, and in par-
ticular on inheritance networks. Defeasible logics can be seen as inheritance networks 
expressed in a logical rules language. In fact, they are the first nonmonotonic reason-
ing approach designed from its beginning to be implementable.  

Being nonmonotonic, defeasible logics deal with potential conflicts (inconsisten-
cies) among knowledge items. Thus they contain classical negation, contrary to usual 
logic programming systems. They can also deal with negation as failure (NAF), the 
other type of negation typical of nonmonotonic logic programming systems; in fact, 
[24] argues that the Semantic Web requires both types of negation. In defeasible  
logics, often it is assumed that NAF is not included in the object language. However, 
as [3] argues, it can be easily simulated when necessary. Thus, we may use NAF in 
the object language and transform the original knowledge to logical rules without 
NAF exhibiting the same behavior. 

Conflicts among rules are indicated by a conflict between their conclusions. These 
conflicts are of local nature.  The simpler case is that one conclusion is the negation of 
the other. The more complex case arises when the conclusions have been declared to 
be mutually exclusive, a very useful representation feature in practical applications.  

Defeasible logics are skeptical in the sense that conflicting rules do not fire. Thus 
consistency of drawn conclusions is preserved. 
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Priorities on rules may be used to resolve some conflicts among rules. Priority in-
formation is often found in practice, and constitutes another representational feature 
of defeasible logics.  

The logics take a pragmatic view and have low computational complexity. This is, 
among others, achieved through the absence of disjunction and the local nature of pri-
orities: only priorities between conflicting rules are used, as opposed to systems of 
formal argumentation where often more complex kinds of priorities (e.g. comparing 
the strength of reasoning chains) are incorporated. 

Generally speaking, defeasible logics are closely related to Courteous Logic Pro-
grams [11], as discussed in, e.g., [5]. 

The Language 

A defeasible theory D is a couple (R,>) where R a finite set of rules, and > a superior-
ity relation on R. Rules containing free variables are interpreted as the set of their 
variable-free instances. 

There are three kinds of rules: Strict rules are denoted by A → p, and are inter-
preted in the classical sense: whenever the premises are indisputable then so is the 
conclusion. An example of a strict rule is “Professors are faculty members”. Written 
formally: professor(X) → faculty(X). Inference from strict rules only is called 
definite inference. Strict rules are intended to define relationships that are definitional 
in nature, for example ontological knowledge.  

Defeasible rules are denoted by A ⇒ p, and can be defeated by contrary evidence. 
An example of such a rule is faculty(X) ⇒ tenured(X) which reads as follows: 
“Professors are typically tenured”. 

Defeaters are denoted as A ~> p and are used only to prevent some conclusions, 
not to actively support conclusions. An example of such a defeater is assistant-
Prof(X) ~> ¬tenured(X) which reads as follows: “Assistant professors may be 
not tenured”.  

A superiority relation on R is an acyclic relation > on R (that is, the transitive clo-
sure of > is irreflexive). When r1 > r2, then r1 is called superior to r2, and r2 inferior to 
r1. This expresses that r1 may override r2. For example, given the defeasible rules 

r:  professor(X) =>  tenured(X) 
r’: visiting(X)  => ¬tenured(X) 

which contradict one another, no conclusive decision can be made about whether a 
visiting professor is tenured. But if we introduce a superiority relation > with r’ > r, 
then we can indeed conclude that a visiting professor is not tenured. 

The system works roughly in the following way: to prove a conclusion A defeasi-
bly, there must be a firing rule with A as its head (that is, all literals in the rule body 
have already been proved); in addition, we must rebut all attacking rules with head the 
(strong) negation of A. For each such attacking rule we must establish either (a) that 
this rule cannot fire because we have already established that one of the literals in its 
body cannot be proved defeasibly (finite failure), or (b) that there is a firing rule with 
head A superior to the attacking rule.  

A formal definition of the proof theory is found in [3]. A model theoretic semantics 
is found in [17].  
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3    System Functionality 

In this section we mainly concentrate on the functionality of the proof explanations 
facility of the DR-DEVICE system (Fig. 1). More details on the architecture and the 
implementation of the system can be found in [5].  
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Fig. 1. Functionality of the DR-DEVICE system 

The DR-DEVICE system accepts as input a defeasibe logic rulebase (step 4) in a 
RuleML-like syntax [9]. The rulebase has been created by a user (step 1) and its  
address is submitted to the DR-DEVICE system (step 3) through the stand-alone user 
interface of the system [6], or through a web-based interface hat we are currently de-
veloping. The rulebase contains only rules; the facts for the rule program are (input) 
RDF documents, whose addresses are declared in the rulebase header (step 2). The 
rule conclusions are materialized inside DR-DEVICE as objects (step 5) and when  
the inference procedure terminates, the instances of designated derived classes are  
exported as an RDF document (step 6). The RDF document includes: 

• The RDF Schema definitions for the exported derived classes.  
• Those instances of the exported derived classes, which have been proven, either 

positively or negatively, either defeasibly or definitely.  

Furthermore, the system exports the grounds for all derived objects in a separate 
RuleML document (steps 6, 7). To this end we have extended RuleML with an XML 
schema for proofs of both classically (definitely) derived objects and defeasibly de-
rived objects, which is discussed in the next section. DR-DEVICE returns to the user 
(step 8) the address of the RDF document with the results and the address of the 
RuleML document with the proof traces. Finally, the user can access the results (step 
9) and the proofs (step 10) through a web browser or through a specialized software 
that can customize the visualization. Notice, that DR-DEVICE can also provide  
explanations about non-proved objects. 
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4   Proof Schema 

The XML Schema for proof traces1 explaining DR-DEVICE’s results is an extension 
of the RuleML’s 0.91 schema2. Actually, the rule language of DR-DEVICE is also an 
extension of RuleML. Extensions (for the rule language) deal with two aspects of DR-
DEVICE, namely defeasible logic and its CLIPS implementation. Defeasible logic 
extensions include rule types, superiority relation among rules and conflicting literals, 
while CLIPS-related extensions deal with constraints on predicate arguments and 
functions. More details about the rule language can be found in [5].  

The top-level element of the proof schema is the optional Grounds element, which 
is a top-level element of a RuleML document, although it should actually be an alter-
native to an Assert element. The latter could not be achieved using the redefinition 
mechanism of XML Schema, since element extensions deal only with sequences and 
not choices. Grounds consist of multiple proved or even not proved rule conclusions. 
Proofs can be either definite, i.e. using classical strict rules, or defeasible, which can 
use all three rule types of defeasible logic. 

Definitely proved literals consist of the literal itself and the definite proof tree. The 
literal can be a positive atom or its negation, or even a reference to an RDF resource. 
Notice that DR-DEVICE uses RDF resources as facts and its conclusions are also  
materialized as RDF resources. A literal is definitely proved if there is a strict clause, 
either a strict rule or a fact, whose body literals are also definitely proven. Rules can 
either be in-lined in the proof tree or an external reference can exist to rules in another 
RuleML document. Similarly, the proofs for body literals can either be encapsulated 
in the proof tree of the rule head or can be referenced from another place of the proof 
document. 

On the other hand, defeasible proofs are more complicated since they require either 
a defeasible or a strict rule (collectively called supportive rules), whose body literals 
are defeasibly proven. Notice that a definite proof subsumes a defeasible proof, that is 
why the Definite_Proof element is an alternative to the Defeasible_Proof ele-
ment. Furthermore, the defeasibe conclusion must not be strongly attacked, i.e. the 
negation of the conclusion must not be definitely proved. Finally, the rules that defea-
sibly attack the current one must all be blocked, so the defeasible conclusion of this 
rules prevails. 

A rule can be blocked in three ways. A defeasible rule (or a defeater) is blocked ei-
ther when its body literals are not defeasibly proven or when it is attacked by another 
superior defeasible rule, whose body literals are defeasibly proven. A strict rule is 
blocked if its body literals are not definitely proven. Finally, inferior defeasible rules 
are considered as blocked. 

Not proved conclusions follow a similar structure, i.e. the supportive rule that 
could not prove something must be included along with the reason why this hap-
pened. In the case of a defeasible non-proof, reasons include either the non-proof of 
some of the body literals or a definitely proved negated literal or an undefeated defea-
sible attacker. A defeasible attacker can be a defeasible rule or a defeater, whose body 
                                                           
1 http://lpis.csd.auth.gr/systems/dr-device/dr-device-0.91.xsd 
2 http://www.ruleml.org/0.91/xsd/nafnegdatalog.xsd 
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literals are proven and whose possible attackers have been blocked. Notice that in  
order for a conclusion to not be defeasibly provable it must also be not definitely 
provable. The latter is similar to the blocked strict rule case above.  

5   Proof Example 

In this section we include a full example of the functionality of DR-DEVICE concern-
ing both the inferencing and proof provision procedures. Assume that the user wants 
to submit the following rulebase (shown in simple logical notation) and wants to find 
out why the conclusion rich(antonis) is defeasibly derived. 

wins_lotto(antonis) owns(antonis) 
r1: wins_lotto(X) ⇒ rich(X) r2: paid_well(X) ⇒ rich(X) 
r3: owns(X) ⇒ ¬rich(X) r1 > r3 

r4: gamble(X) ⇒ ¬rich(X)  

The rulebase is submitted to DR-DEVICE as a RuleML document (Fig. 2). Notice 
that facts are not directly included in the RuleML document but in a separate input 
RDF document (Fig. 3), as indicated by the rdf_input attribute of the top-level 
RuleML element in Fig. 2. The rdf_export_classes attribute indicates which are 
the exported conclusions, the rdf_export attribute designates the output RDF 
document (Fig. 4) and the proof attribute designates the output RuleML document 
(Fig. 5) that contains the proofs for the exported conclusions. 

DR-DEVICE atoms follow an object-oriented structure; the operator is a class 
name and the arguments are named slots. The DR-DEVICE system employs an ob-
ject-oriented RDF data model ([5], [7]), where properties as normal encapsulated at-
tributes of resource objects. The operator of an atom corresponds to the type of an 
RDF resource, the oid element to the URI of the resource and the slot arguments to 
the resource’s properties. 

The exported results in Fig. 4 contain the materialization of the derived object 
as an RDF resource, which also contains some system-defined properties, such as 
truthStatus that indicates if the conclusion was definitely or defeasibly proven, 
and proof that references the proof ID of the corresponding proof tree in the out-
put proof document (Fig. 5). The latter indicates that the corresponding RDF re-
source was defeasibly proved using defeasible rule r1, whose body literal was also 
defeasibly proved via a definitive proof due to the existence of a fact (RDF re-
source of the input RDF document). Furthermore, the negated conclusion was not 
definitely proven, because there are no appropriate strict rules, which is indicated 
by the fact that the not_strongly_attacked element is empty. Finally, defeasi-
ble rules r3 and r4 which attack r1 are both blocked; r3 is blocked because it is at-
tacked by the superior rule r1 and r4 is blocked because its body literal cannot be 
proved. 
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<RuleML rdf_import="http://.../ex1.rdf" rdf_export_classes="rich"
    rdf_export="export-ex1.rdf" proof="http://.../proof-ex1.ruleml" 
    xsi:schemaLocation="http://www.ruleml.org/0.91/xsd 
              http://.../dr-device/dr-device-0.91.xsd"> 
 <Assert> 
  <Implies ruletype="defeasiblerule"> 
   <oid><Ind uri="&ex_rb;r1">r1</Ind></oid> 
   <head> <Atom> <op><Rel>rich</Rel></op> 
           <slot><Ind>person</Ind> <Var>x</Var></slot> </Atom> </head> 
   <body> <Atom> <op><Rel uri="ex:person"/></op> 
        <slot><Ind>ex:name</Ind><Var>x</Var></slot> 
        <slot> <Ind>ex:wins_lotto</Ind> 
            <Data xsi:type="xs:string">true</Data> </slot> </Atom> </body> 
   <superior> <Ind uri="&ex_rb;r3"/> </superior> 
  </Implies> 
...
  <Implies ruletype="defeasiblerule"> 
   <oid><Ind uri="&ex_rb;r3">r3</Ind></oid> 
   <head> <Neg> <Atom> <op><Rel>rich</Rel></op> 
           <slot><Ind>person</Ind><Var>x</Var></slot> </Atom> </Neg> </head> 
   <body> <Atom> <op><Rel uri="ex:person"/></op> 
        <slot><Ind>ex:name</Ind><Var>x</Var></slot> 
        <slot> <Ind>ex:owns</Ind> 
            <Data xsi:type="xs:string">true</Data> </slot> </Atom> </body> 
  </Implies> 
...
 </Assert> 
</RuleML>

 

Fig. 2. Rulebase example parts 

<rdf:RDF ... > 
  <ex:person   rdf:ID="Inst_6"  
    ex:name="antonis"     ex:owns="false"  
    ex:paid_well="true"    ex:wins_lotto="true"/> 
</rdf:RDF>

 

Fig. 3. Input RDF document example 

<rdf:RDF xmlns:defeasible="http://.../defeasible.rdfs#" 
     xmlns:dr-device="http://.../export-ex1.rdf#" ... > 
...
 <dr-device:rich rdf:about="http://.../export-ex1.rdf#rich1">
  <dr-device:person>antonis</dr-device:person> 
  <defeasible:truthStatus>defeasibly-proven</defeasible:truthStatus>
  <defeasible:proof
    rdf:datatype="&xsd;anyURI">'http://.../proof-ex1.ruleml#proof1'</defeasible:proof>
 </dr-device:rich> 
</rdf:RDF>

 

Fig. 4. Output RDF document example. 

6   Related Work 

Besides teaching logic [4], not much work has been centered around explanation in 
reasoning systems so far. Rule-based expert systems have been very successful in  
applications of AI, and from the beginning, their designers and users have noted the 
need for explanations in their recommendations. In expert systems like [21] and Ex-
plainable Expert System [23], a simple trace of the program execution rule firing ap-
pears to provide a sufficient basis on which to build an explanation facility and they 
generate explanations in a language understandable to its users. 
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Fig. 5. Proof example 

Work has also been done in explaining the reasoning in description logics [18]. 
This research presents a logical infrastructure for separating pieces of logical proofs 
and automatically generating follow-up queries based on the logical format. 

The most prominent work on proofs in the Semantic Web context is Inference Web 
[19]. The Inference Web (IW) is a Semantic Web based knowledge provenance infra-
structure that supports interoperable explanations of sources, assumptions, learned in-
formation, and answers as an enabler for trust. It supports provenance, by providing 
proof metadata about sources, and explanation, by providing manipulation trace  
information. It also supports trust, by rating the sources about their trustworthiness. 

IW simply requires inference rule registration and PML format. It does not limit it-
self to only extracting deductive engines. It provides a proof theoretic foundation on 
which to build and present its explanations, but any question answering system may 
be registered in the Inference Web and thus explained. So, in order to use the Infer-
ence Web infrastructure, a question answering system must register in the IWBase its 
inference engine along with its supported inference rules, using the PML specification 

<RuleML rdf_import="http://.../ex1.rdf"     rdf_export="http://.../export-ex1.rdf"  
    rulebase="http://.../dr-device/proof/ex/ex1.ruleml" 
    xsi:schemaLocation="http://www.ruleml.org/0.91/xsd http://.../dr-device-0.91.xsd"> 
 <Grounds> 
  <Proved> 
   <Defeasibly_Proved> <oid><Ind uri="&pr_ex;proof1">proof1</Ind></oid> 
    <Literal> <RDF_resource uri="http://.../export-ex1.rdf#rich1"/> 
    <Defeasible_Proof> 
     <supportive_rule> <rule_ref rule="&ex_rb;r1"/> </supportive_rule> 
     <defeasible_body_grounds> 
      <Defeasibly_Proved> 
       <Literal> <Atom> <op><Rel uri="ex:person"/></op> 
             <slot> <Ind>ex:name</Ind> 
                 <Data xsi:type="xs:string">Antonis</Data></slot> 
             <slot> <Ind>ex:wins_lotto</Ind> 
                 <Data xsi:type="xs:string">true</Data> </slot> </Atom> 
       </Literal> 
       <Definite_Proof> 
        <strict_clause> 
         <Fact> <RDF_resource uri="http://...ex1.rdf#Inst_6"/> </Fact> 
        </strict_clause> 
       </Definite_Proof> 
      </Defeasibly_Proved> 
     </defeasible_body_grounds> 
     <not_strongly_attacked/> 
     <defeasible_attackers_blocked> 
      <Blocked> 
       <Blocked_Defeasible_rule> 
        <rule_ref rule="&ex_rb;r3"/> 
        <Attacked_by_Superior> <rule_ref rule="&ex_rb;r1"/> 
        </Attacked_by_Superior> </Blocked_Defeasible_rule> </Blocked> 
      <Blocked> 
       <Blocked_Defeasible_rule> 
        <rule_ref rule="&ex_rb;r4"/> 
        <not_defeasible_body_grounds> 
         <Not_Defeasibly_Proved> 
          <Literal> <Atom> <op><Rel uri="ex:person"/></op> 
                <slot> <Ind>ex:name</Ind> 
                    <Data xsi:type="xs:string">Antonis</Data></slot> 
                <slot> <Ind>ex:gambles</Ind> 
                    <Data xsi:type="xs:string">true</Data> </slot> 
          </Atom>  </Literal> 
          <Not_Defeasible_Proof/> 
          <Not_Definite_Proof/> 
... 
</RuleML> 
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format. The IW supports proof generation service that facilitates the creation of PML 
proofs by inference engines. 

Closest to this paper is the work [2] that also focuses on explanation extraction and 
presentation for defeasible reasoning on the semantic web, but relies on an XSB-
based reasoning engine and is embedded in a multi-agent environment, while it pro-
vides few details regarding the extensions of RuleML. 

7   Conclusion and Future Work 

This work presented a new system that aims to increase the trust of the users for Se-
mantic Web applications. The system automatically generates an explanation for 
every answer to user’s queries, in a formal and useful representation. It can be used by 
individual users who want to get a more detailed explanation from a reasoning system 
in the Semantic Web, in a more human readable way. Also, an explanation could be 
fed into a proof checker to verify the validity of a conclusion; this is important in a 
multi-agent setting. Our reasoning system is based on defeasible logic (a non-
monotonic rule system) and we used the related reasoning engine DR-DEVICE. One 
contribution of our work is a RuleML extension for a formal representation of an  
explanation using defeasible logic. 

In future work, we intend to improve the explanation facility to make it more intui-
tive and human-friendly, to suit users unfamiliar with logic. This effort includes proof 
visualization and visual rule execution tracing through integrating the work described 
in this paper with a tool for rule visualization [15] we have developed. Also, integra-
tion with the Inference Web infrastructure will be explored. Finally, we will investi-
gate the use of the system in semantic web applications in which explanation and trust 
are essential elements. 
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Abstract. We investigate the use of domain ontologies that also include
actions and events of that domain. Such ontologies do not only cover the
static aspects of an ontology, but also activities and behavior in the
given domain. We analyze what information has to be contained in such
an ontology and show that large parts of the behavior can be expressed
preferably by rules. We show how the tasks can be integrated and handled
by a service infrastructure in the Semantic Web.

1 Introduction

For a powerful Semantic Web, a domain ontology should provide a comprehensive
computer-processable characterization of an application domain. When consid-
ering the Semantic Web not only as a set of passive data sources (as by e.g. the
OWL language design that provides powerful modeling concepts for expressing
static issues of ontologies), but as a living organism of autonomous nodes, on-
tologies also have to supply notions of behavior. In this paper, we investigate
ontologies for active nodes in the Semantic Web. For that we define first an ab-
stract ontology of active concepts which is based on the concepts of events and
actions. By having a set of agreed events and actions in an ontology, both local
and global behavior in the Semantic Web can be expressed and implemented in
a modular and declarative way by Event-Condition-Action (ECA) Rules.

MARS (Modular Active Rules for the Semantic Web) is a proposal for a
framework for modular specification of active rules in the Semantic Web. From
that point of view, it deals with languages and services for processing ECA
rules and their components. For this paper, we take languages and services for
running ECA rules (ECA-ML and an ECA engine [BFMS06b]), composite event
descriptions and algorithmic event detection, as well as process specifications
and execution [BFMS06a] as given.

The paper is structured as follows: In the next section, we describe how on-
tologies are extended with events and actions. In Section 3, we show how the
subontology of events and actions in a domain can be described by different
types of rules. The remaining sections describe how an active Semantic Web is
realized upon such ontologies: Section 4 presents an architecture for individual
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domain nodes that support actions and events, and Section 5 describes the Do-
main Brokers that organize the communication between nodes contributing to a
domain. Section 6 concludes the paper.

2 Domain Ontologies Including Dynamic Aspects

A complete ontology of an application domain requires to describe not only the
static part, but also the dynamic part, including actions and events. Figure 1 de-
picts the structure of an ontology and the interferences between its components.
Static concepts can be partitioned into classes, relationships and individuals.
Actions influence classes, relationships, and individuals, and raise events.

Domain Ontology

Named
Events

Statics
Named
Actions

delayed-flight delay-flight

Classes Relationships Individuals

flight operated-by paris-cdg

influence

raise

Fig. 1. Structure and Interference in Ontologies

An ontology relates the notions of a domain, as provided by the RDFS
and OWL vocabularies. When including events and actions, further constraints,
derivations and interferences can be described that –if rich enough– can even
serve for reasoning and verification of workflows: describe actions in terms of
agents, preconditions, and effects/postconditions; describe events, i.e., correlat-
ing actions and the resulting events; specify composite events and composite
actions (processes); and in the end, business rules themselves can also be seen
as parts of the ontology of an application.

2.1 Actions

The notion of actions is already established in modeling formalisms (e.g., UML).
For describing atomic actions in an ontology, the main aspects are what classes
the arguments belong to, the preconditions when an action is applicable, and
the state that is guaranteed to hold afterwards. For composite actions, their
definition in terms of reduction rules to processes over simpler actions has to
be given, e.g., “implement a money transfer of amount x from A to B by a
debit of x at A, and a deposit of x at B”. This can e.g. be done by using CCS
[Mil83, BFMS06a].
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2.2 Events

Application Domain Events. Domain events are the basic events in a particular
application domain. They are used by high-level rules, e.g., business rules. Such
events must be described by the ontology of an application.

Events vs. Actions. In contrast to simple RDF or XML data-level events, on the
application-level there is an important difference between actions and events :
an event is a visible, possibly indirect or derived, consequence of an action. For
instance, the action is to “book person P on flight LH123 on 17.2.2007” which
results in the internal action “book person P for seat 42C of flight LH123 on
17.2.2007” and the events “a person has been booked for a seat behind the
kitchen”, “flight LH123 on 17.2.2007 is fully booked”, “all flights from X to Y
on 17.2.2007 are fully booked” (*) , or “person P has now more than 10.000
bonus miles”. Note that there may be several rules for the same derived event;
e.g., (*) can also be raised by canceling flight AF678 on the same day. All these
events can be used for formulating (business) rules.

Use and Communication of Events. In contrast to the static information that is
evaluated by queries, events are not queried, but are subject to event detection.
This means, that a node that wants to “use” an event has to become aware of it.
For that, events are emitted by the nodes and they are objects in the Semantic
Web that are communicated between nodes (e.g. as XML fragments).

Derived and Composite Events. Derived events can be defined in terms of a
temporal condition on (one or more) subevents and optionally a test of a con-
dition: The event “flight LH123 on 17.2.2007 is fully booked” is actually raised
by a single final booking event and a query against the current bookings. In
contrast, the event “flight LH456 is first delayed, and later canceled” is a com-
posite event defined as a sequence of subevents. Composite events are subject of
heterogeneity since there are multiple formalisms for describing them. In most
cases, event algebras, e.g., SNOOP [CKAK94] are used. Derived events are de-
fined by derivation rules that can be expressed as ECA rules where the event
component describes the triggering (atomic or composite) event, the condition
part contains the query, and the action consists of raising/signaling the derived
event; this will be discussed in Section 3.

Localization of Events. While basic application-level events are associated with
a certain node, derived events can either involve subevents and queries at a
single node, or they can happen “Web-wide”, i.e., involve knowledge from several
nodes: the event “flight LH123 on 17.2.2007 is fully booked” is only concerned
with local knowledge of the according airline node. In contrast, the event that all
flights between two places on a given day are fully booked can only be derived
“Web-wide” – doing this will be one of the tasks of the domain broker.
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3 Defining and Relating Events and Actions of an
Ontology in Terms of Rules

In the MARS approach, the behavior of domains is specified and implemented
by several types of rules on different abstraction levels (cf. Figure 2). Rules that
axiomatize the ontology, i.e., mandatory relationships between actions, objects,
and events that are inherent to the domain must be validated against the ontol-
ogy. Additionally, there are rules that specify a given application on this domain.

Event Condition Action

Application
Level Events

Application
Level Actions

Integrated (RDF)
Level Events

Integrated (RDF)
Level Actions

Local (XML,SQL)
Level Events

Local (XML,SQL)
Level Actions

A
b
stra

ctio
n

ECA Business

ACE Mapping

localized ECA

ACE MappingECE Deriv.

ECE Deriv. ACA Reduct.

ACA Reduct.
ECA triggers

database level:

actions=events

ECE Deriv. ACA Reduct.

Fig. 2. Types of Rules

3.1 ECA Rules

From the external user’s point of view, ECA-Business Rules specify the actual
behavior and run application services: “when something happens and some con-
ditions are satisfied, something has to be done”. Here, events and actions refer
to a very high and abstract level of the ontology. Internally, ECA rules are also
used for implementing mechanisms e.g. for integrity maintenance.

3.2 ECE Event Derivation Rules: Providing High-Level Events

For implementing high-level rules, high-level events need to be derived according
to their definition in the ontology. This is done by ECE (event-condition-event)
rules where the “action” actually consists of deriving/raising an event.

ECE rules can be horizontal, i.e., the event is derived from another high-level
event under certain conditions, e.g., “when a booking for a flight is done, and
this is the last seat, then the plane is completely booked”.

In upward vertical ECE rules, an abstract event is derived from a less abstract
one. This case covers both the derivation of global events from local ones, and
the derivation of events from changes in the underlying database, e.g., “when the
arrival time in a database of a flight of today is changed (database-level update),
signal ‘delay of a flight’”.
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While ECA rules are active rules, the logical semantics of ECE rules corre-
sponds to the bottom-up semantics of derivation rules: Given the body, “derive”
the head event. Event derivation rules “fire” only once when an event is detected
and another event is raised.

3.3 ACA/ACE Rules: Talking About High-Level Actions

High-level actions like “book a travel by plane from Hanover to Lisbon” are
reduced by rules that provide an implementation (by searching for (indirect)
connections). Such reduction ACA (action-condition-action) rules correspond to
SQL’s INSTEAD-triggers. Considering Transaction Logic Programming [BK93]),
they are also closely related to the top-down semantics of derivation rules: To
obtain the head, realize the body. Some of these rules are inherent to the ontology
of the underlying domain, others specify only the behavior of a given application
(including e.g. local policies that are not inherent to the domain).

Event Derivation instead of Detection. Since high-level events can also be seen
as consequences of high-level actions, it is also reasonable to raise them when a
certain action is executed. In most cases, this amounts to a simple mapping from
high-level actions to high-level events: the action “cancel-flight($flight)” directly
raises the event “cancelled-flight($flight)” at the same node (and is internally
executed by inserting a fact into a database by a downward ACA rule).

ACA and ACE on higher level are located in the Domain Brioker, whereas
ACA rules that provide the actual implementation of atomic actions are located
in the individual domain nodes.

3.4 Low-Level Rules

The base is provided by update actions on the database level (to which all
abstract actions must eventually be reduced in order to actually change the
state of any node) and low-level ECA rules, e.g., database triggers. Here, neither
the event nor the action is part of the application ontology, but both exist and
are related only due to the physical implementation of the application.

3.5 Responsibility for Rule Processing

As depicted in Fig. 2, the actual processing of the rules takes place on different
levels: only local rules can be processed in the individual domain nodes, this
includes low-level ECE and ACA rules. For higher-level rules, e.g., ECE that
define global events, or ACA that distribute actions, the Domain Brokers are
responsible. Such rules belong to the globally agreed ontology of the domain.
Additionally, the domain brokers have to know the individual domain application
nodes (via registration or search), and have to be aware of events. They also serve
as “primary” contact to users and higher-level services (such as the general,
application-independent ECA engines) for queries and execution of actions in a
domain.
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4 Domain Application Nodes

Domain application nodes are the “leaves” of the Semantic Web architecture.
They represent services in the application domain, e.g., airlines or train com-
panies. As such, they usually have some kind of database or knowledge base.
According to their task as services, they are able to execute actions of that
domain (e.g., booking a flight). Extending known Web Service functionality, do-
main nodes also emit events as defined by the domain ontology (e.g. that a flight
is now fully booked).

The Jena [Jen] Framework provides an API for dealing with RDF and OWL
data. In our implementation, the node core consists of a Jena instance that
uses an external database (e.g. PostgreSQL) for storing base data, and the DL
reasoner Pellet. The handling of ontology-level behavior and mapping it to the
RDF model level is located in a wrapper as shown in Fig. 3.

Domain
Broker

ACA Mapper
matches actions
against mappings

ACA Mappings
Repository

Jena-based core module
with Active Functionality

PostgreSQL
Database:
RDF facts

DL Reasoner
(e.g. Pellet)

updates

materialized
base facts

facts
queries

model
answers

actions

queries

answers

event
occurrences

Fig. 3. Architecture of the Domain Node

Functionality of the Node Core. An RDF/OWL domain node with local ac-
tive behavior has been implemented and is described in [MSvL06]: Queries over
concepts and properties are directly stated in SPARQL against the RDF/OWL
core. The basic functionality has been extended with a simple update language
for RDF data and with support for RDF-level database triggers reacting upon
database update actions. With this, local ECA rules inside the database (that are
also required to support actual updates, e.g., when deleting an instance p(x, y) of
a property that is symmetric and stored as p(y, x)) as well as ECE rules raising
simple events can be implemented. In the MARS Framework, atomic events are
communicated in a straightforward XML format to the domain brokers, e.g.,

<travel:delayed-flight flight=“iata://flights/LH123” time=“30 min”/> .
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Functionality of the Node Wrapper. Execution of Actions. Ontology-level actions
are communicated to the domain nodes according to an agreed downward com-
munication format, consisting of the action as an XML fragment, and optionally
tuples of variable bindings (cf. [MAA05]), e.g.,

<travel:schedule-flight flight=“iata://flights/LH123”
captain=“travel://.../airlines/lufthansa/people/jamestkirk”>

<travel:cabincrew name=“. . . ”/>

<travel:cabincrew name=“. . . ”/>

</travel:schedule-flight>

The ACA reduction rules implement the actions similar to INSTEAD-triggers
that update the local database. The local implementation of the mapping from
actions (that are atomic from the ontology level) onto actual database update
statements for a given XML input can be seen as a transformation that generates
a sequence of database updates:

## sample rule using XQuery-style
IMPLEMENT <schedule-flight/> BY
let $flight := /schedule-flight/@flight
let $captain := /schedule-flight/@captain
return concat(
"INSERT ($flight has-captain $captain);",
for $name in /schedule-flight/cabincrew/@name
let $cabincrew := local:make-person-uri($name)
return "INSERT ($flight has-cabincrew $cabincrew);")

Note that the implementation of an action must match the specification of the
action in terms of preconditions and postconditions, if such a specification is
given in the ontology. Such specifications that can then also serve for reasoning
about workflows are future work. A domain node for a certain domain ontology
is set up by instantiating the generic architecture with a set of ACA mappings.

5 Domain Brokering

The MARS domain broker architecture has been implemented in [Kna05]. Bro-
kering –often also known as (query) mediation– is a well-known issue in dis-
tributed environments. In addition to query brokering, domain brokers also have
to collect events coming from domain nodes and to forward them to event con-
sumers such as ECA engines and composite event detection services. Addition-
ally, actions requested by ECA engines are forwarded to domain nodes to be
executed.

5.1 Query Brokering

Domain brokers are responsible as mediators for answering queries by querying
domain nodes and integrating the answers. For that, domain brokers know the
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respective ontology that consists of OWL statements and derivation rules (here,
current developments like SWRL [SWRL] or DL+log [Ros05] can be used). To
get the MARS infrastructure running, a simple approach is followed first (query
evaluation is not in the focus of the MARS framework – it will be ready to adapt
any distributed query answering algorithm): Given a query, all static notions
(concepts and properties) that are relevant for answering the query are identi-
fied. For this, declarations like owl:inverseOf and owl:equivalentProperty must be
considered. Moreover, if the ontology contains rules (or OWL class definitions
and axioms) of the form head ← body, and the notion in the head is asked,
notions occurring in the bodies have to be answered. Each of the notions is for-
warded to the relevant domain nodes. The domain broker collects the answers
(as RDF triples) and uses them for answering the original query.

5.2 Event Brokering

Event Brokering functionality provides the mediation between event providers
(i.e., domain nodes) and event consumers. We give only an abstract sketch of the
event handling, see [AAB+06, Chapter A.4.2] for details: The event component of
an ECA (or ECE) rule is a specification of a (possibly composite) event pattern
using an event algebra (which can be seen as a certain ontology for composite
events) over atomic event specifications (AESs), which are simple queries or
patterns of event instances, binding (free) variables, e.g.,

<travel:delayed-flight flight=“{$FlightNo}” time=“{$Time}”/> .

Given a composite event specification, the composite event detection service
(CED) registers each contained AES at an Atomic Event Matcher (AEM) for
the respective (matching) formalism. The AEM then registers at the Domain
Brokers for the relevant event types (e.g., travel:delayed-flight). From then on,
the domain broker will forward every element of that type to the AEM. Note
that when using more sophisticated ontologies and RDF/OWL-based AES for-
malisms, event classes and subclasses can be defined and OWL reasoning about
events has to be applied.

Derived events are explicitly raised by ECE rules encoded as ECA rules that
can be registered at any ECA engine to enable the detection of the derived event:

<eca:Rule>

<!-- eca:Event and eca:Query: body of the ECE rule definition -->

<eca:Action>

<eca:raise-event> <!-- head of the ECE rule --> </eca:raise-event>

</eca:Action>

</eca:Rule>

5.3 Action Brokering

Clients request actions either at certain domain nodes, or at the domain broker.
The broker then forwards the (sub)tasks to all relevant domain nodes.
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Example 1. Consider the case that the domain node representing Frankfurt Air-
port decides to delay a given flight by one hour due to bad weather conditions,
e.g., by a rule

<eca:Rule xmlns:travel=“http://www.semwebtech.org/domains/2006/travel”>

<eca:Event>bad snow conditions detected </eca:Event>

<eca:Query>all $flights departing in the next hour </eca:Query>

<eca:Action>

<travel:delay-flight flight=“{$flight}” delay=“1h” reason=“snow”/>

</eca:Action>

</eca:Rule>

The action instances (submitted e.g. as XML or RDF/XML)

<travel:delay-flight flight=“LH123” delay=“1h” reason=“snow”/>

<travel:delay-flight flight=“AF789” delay=“1h” reason=“snow”/>

are sent to a domain broker for the travel domain. The broker then checks which
nodes are potentially concerned by that action.

Mapping of the Action by the Domain Nodes. The domain ontology contains an
ACA rule that specifies how the action is mapped to RDF-level updates, e.g.

## sample rule in the local RDF and RDF updates style
IMPLEMENT { a travel:delay-flight;

travel:flight $Flight; travel:delay $Time; travel:reason $Reason }
BY ASSERT (make-uri($Flight) travel:is-delayed $Time)

ANNOTATE WITH (travel:reason $Reason)

5.4 Handling of Composite Actions by ACA Rules

As discussed above, ACA rules are a suitable paradigm for expressing actions on
a higher abstraction level by defining them as composite actions. The structure
and the information flow through the components (in MARS done by variable
bindings [MAA05]) of ACA rules is closely related to ECA rules – both use an
“ON . . . DO”: “on invocation of an action do . . . ” and “on occurrence of an
event do . . . ”. The specification of the invoking action (an atomic action given
by some action name with parameters) uses the same AES/AEM mechanisms
as for atomic event specification. Thus, the available ECA engine architecture
can be used. When a domain broker is initialized with an ontology, it registers
all ACA rules of the ontology at an ECA engine. It registers the atomic action
specification (analogous to AES) at an AEM. The AEM registers at one or
more domain brokers (for domain:action-name), and the domain brokers submit
these actions like events to the AEM. Thus, only the domain broker must be
aware if a registration by the AEM is concerned with an event or an action (this
information is contained in the ontology).
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6 Conclusion

We have described the domain brokering level for the MARS (Modular Active
Rules for the Semantic Web) Framework. By being completely rule-based, it
extends and uses the infrastructure that has been defined and implemented for
processing ECA rules.

Related Work. There is a lot of related work on query brokering and mediators
in the data integration and peer data management areas, but we are not aware
of approaches for event brokering and action brokering in the above style.
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Abstract. The well-founded semantics (WFS) for logic programs is one
of the few major paradigms for closed-world reasoning. With the advent
of the Semantic Web, it is being used as part of rule systems for ontol-
ogy reasoning, and also investigated as to its usefulness as a semantics
for hybrid systems featuring combined open- and closed-world reason-
ing. Even in its most basic form, however, the WFS is undecidable. In
fact, it is not even semi-decidable, which means that it is a theoretical
impossibility that sound and complete reasoners for the WFS exist.

Surprisingly, however, this matter has received next to no attention in
research, although it has already been shown in 1995 by John Schlipf [1].
In this paper, we present several conditions under which query-answering
under the well-founded semantics is decidable or semi-decidable. To the
best of our knowledge, these are the very first results on such conditions.

1 Introduction

Logic programming under the well-founded semantics (WFS) [2] is one of the
most prominent paradigms for knowledge representation and reasoning. It has
recently found applications in the area of Semantic Web reasoning, in particular
in the form of the logic programming variant of F-Logic [3], on which systems
like FLORA-2, Florid, and the commercial ontobroker are based. As such, it
complements standardized ontology languages such as the description logics and
open-world based Web Ontology Language OWL1, in that it provides a rule-
based modeling paradigm under a non-monotonic closed-world semantics.

However, while decidability of the language was a major design criterion for
OWL, logic programming under the WFS is undecidable — indeed, it is not
even semi-decidable in the presence of function symbols [1], which is a rather
unpleasant fact because this means that sound and complete implementations
of the semantics are not possible in principle. Hence, existing systems like XSB
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Prolog [4] only realize a decidable or semi-decidable fragment of the WFS. Sur-
prisingly, however, there exists hardly any literature2 describing such decidable
or semi-decidable fragments, or literature describing in detail the fragment(s) of
the WFS actually realized in implementations in terms which are not procedural.

The issue of (semi-)decidable fragments of not semi-decidable non-monotonic
reasoning paradigms indeed has been neglected to a considerable extent, which is
a severe theoretical obstacle in trying to realize expressive practical approaches.
The only work we know which addresses this is due to Bonnatti [5] concerning
Answer Set Programming, which is not readily adaptable to our setting.

In this paper, we study conditions under which query-answering is decidable
or semi-decidable under the well-founded semantics. We obtain such conditions
by combining the notion of relevance of semantics [6] with a new characterization
of the well-founded semantics by means of stratification with level-mappings [7].

The paper is organized as follows. Section 2 introduces key notions and ter-
minology. In Section 3 we combine relevance [6] and stratification [7] to define
a new meta-level property of stratified relevance. In Section 4 we present two
classes of programs with semi-decidable query evaluation and provide examples.
The classes of programs finitely recursive on lower levels and of programs of fi-
nite level are completely new. We prove semi-decidability results in Section 5.
In Section 6 we discuss related literature and conclude.

2 Preliminaries

In this section we introduce our notation and basic definitions. We assume the
reader to be familiar with the classical theory of logic programming. Literals
are atoms or negated atoms. We denote atoms by A, B, C or D and literals
by L; all symbols may be indexed. A (normal) logic program is a finite set of
(normal) rules of the form A ← B1, ..., Bl,¬C1, ...,¬Cm. As usual, by head and
body of such a rule we mean A and B1, ..., Bl,¬C1, ...,¬Cm respectively. A rule
with empty body is called a fact. A query or goal is an expression of the from
← B1, ..., Bl,¬C1, ...,¬Cm.

We will assign a Herbrand universe UP and a Herbrand base BP to a program
P as usual while assuming that the underlying first-order language consists of
exactly the constants, function symbols and predicate symbols occurring in P .
The ground instantiation ground(P ) of P consists of all ground instances (w.r.t.
the Herbrand base BP ) of all rules in P . For a consistent I ⊆ BP ∪ ¬BP ,
we say that A is true in I if A ∈ I, we say that A is false in I if ¬A ∈ I,
otherwise we say that A is undefined in I. A (partial) Herbrand interpretation
I for P is a consistent subset of BP ∪ ¬BP . (Partial) Herbrand interpretations
are ordered by set-inclusion; this is usually called the knowledge ordering on
Herbrand interpretations.

Let P be a program. A > B iff there is a rule in ground(P ) with head A and
B occurring in its body. The dependency graph GP is a directed graph whose
2 In fact, we found none such literature at all, despite a considerable effort invested into

searching for it. Nevertheless, some other results carry over from other semantics.
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vertices are the atoms from ground(P ) and there is an edge from A to B iff
A > B. We say that A depends on B, in symbols A � B iff there is a path from
A to B in GP .

By a semantics we mean a mapping S from the class of all programs into the
power set of the set of all partial Herbrand models. S assigns to every program
P a set of partial Herbrand models of P .

Given a normal program P and a partial interpretation I, we say that A ⊆ BP

is an unfounded set of P w.r.t. I, if for every A ∈ A and every A ← B ∈
ground(P ) one of the following conditions holds: (i) either at least one body
literal L ∈ B is false in I, or (ii) at least one positive body literal B ∈ B is
contained in A. Under the greatest unfounded set of P w.r.t. I we understand
the union of all unfounded sets of P w.r.t. I.

Given a program P , TP (I) is the set of all A ∈ BP such that there is a clause
A ← B in ground(P ) such that B is true in I. Let UP (I) is the greatest unfounded
set of P w.r.t. I. The operator WP (I) is defined by WP (I) := TP (I) ∪ ¬UP (I).
This operator is due to van Gelder et al. [2]. The least fixed point of WP (I) is
called the well-founded model of P , determining its well-founded semantics.

The property of relevance states intuitively that a goal G can be answered
w.r.t. P using only those atoms occurring in ground(P ) on which the atoms
occurring in G depend.

Definition 1. (Relevant Universe and Subprogram [5]) Let P be a pro-
gram and G a ground goal. The relevant universe for P and G is

Urel(P, G) = {B | there occurs and atom A in G such that A � B}.
The relevant subprogram of P for G is

PG = {R | R ∈ ground(P ) and head(R) ∈ Urel(P, G)}.
Definition 2. (Relevance [6]) Relevance states that for all ground literals L
we have S(P )(L) = S(PL)(L), where PL is a relevant subprogram of P w.r.t. L
(and L is understood as a query in the formation of PL).

Relevance states that for all normal logic programs P and all ground atoms A,
P entails A under semantics S iff P←A entails A under S. One should observe
that the relevant subprogram PG w.r.t. a ground goal G contains all rules that
could ever contribute to the derivation of G or to its non-derivability.

Technically, our approach rests on a new characterization of the well-founded
semantics by means of level-mappings, which is due to [7]. Level-mapping char-
acterizations expose the dependency structures between literals underlying a
given semantics. The relevance of level-mapping characterizations for decidabil-
ity analysis is obvious, but we employ them in this paper for the first time.

For an interpretation I and a program P , an I-partial level mapping for P is
a partial mapping l : BP → α with domain dom(l) = {A | A ∈ I or ¬A ∈ I},
where α is some (countable) ordinal. A total level mapping is a total mapping
l : BP → α for some (countable) ordinal α. We extend every level mapping to
literals by setting l(¬A) = l(A) for all A ∈ dom(l).
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Definition 3. (WF-properties [7]) Let P be a normal logic program, I a
model for P , and l an I-partial level mapping for P . P satisfies WF with respect
to I and l if each A ∈ dom(l) satisfies one of the following conditions.

(WFi) A ∈ I and there is a clause A ← L1, .., Ln in ground(P ) such that
Li ∈ I and l(A) > l(Li) for all i.

(WFii) ¬A ∈ I and for each clause A ← A1, .., An,¬B1, ..,¬Bm in ground(P )
(at least) one of the following conditions holds:
(WFiia) There exists i with ¬Ai ∈ I and l(A) ≥ l(Ai).
(WFiib) There exists j with Bj ∈ I and l(A) > l(Bj).

If A ∈ dom(l) satisfies (WFi), then we say that A satisfies (WFi) with respect
to I and l, and similarly if A ∈ dom(l) satisfies (WFii).

Theorem 1. ([7]) Let P be a normal logic program with well-founded model
MP . Then, in the knowledge ordering, MP is the greatest model amongst all
models I for which there exists an I-partial level mapping l for P such that P
satisfies (WF) with respect to I and l.

In the following, we shall often refer to the property of the well-founded semantics
stated in Theorem 1 as the property of stratification. By slight abuse of language,
we call such a level mapping as in Theorem 1 a level mapping characterization
of P (or of the well-founded semantics of P ).

3 Stratified Relevance

Given any semantics S, it is reasonable to expect that the truth value of a
ground goal G only depends on the relevant subprogram PG for G with respect
to P . As we have seen in Section 2, this idea was formalized by Dix [6] in the
property of relevance. We can prove an even stronger property with the help of
level mappings and Theorem 1 from ([7]).

Suppose P has a well-founded model MP . Define an MP -partial level mapping
lP as follows: lP (A) = α, where α is the least ordinal such that A is not undefined
in WP ↑ (α + 1). Let l−1(α) = Λα ⊆ MP be a set of ground literals of level α,
WP ↑ (α + 1)\WP ↑ (α) = Λα. In the following and when it is clear from the
context, we call a set of literals of some level simply a level.

If we evaluate a ground goal of the form ← A, we start from some set Λα

such that A ∈ Λα. According to the WF-properties that a model MP enjoys by
Theorem 1, every evaluation step either ”goes down” to the previous level, or
”stays” at the same level. Therefore we define a new relevant universe U∗rel(P, G)
and, likewise, the relevant subprogram P ∗G, in such a way that the levels are
limited to those ones which are less than or equal to the level of atoms occurring
in a ground goal G w.r.t the level mapping lP .

Definition 4. (Stratified Relevant Universe) Let P be a logic program and
G a ground goal. The stratified relevant universe for P and G is U∗rel(P, G) =

{B | there occurs an atom A in G such that A � B and lP (A) ≥ lP (B)}.
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To define stratified relevant subprogram, we need the following definition:

Definition 5. Let P be a logic program and G be a ground goal. P ′G is the set
of all rules Rσ such that there exists a rule R in P and a substitution σ meeting
the following conditions:

– The head of Rσ is in U∗rel(P, G).
– At least one atom occurring in the body of Rσ is contained in U∗rel(P, G).
– Let A1, . . . , An be all atoms occurring in R, such that Aiσ ∈ U∗rel(P, F ) for

all 1 ≤ i ≤ n. Then the following must hold:
• σ is a most general unifier for the unification problem {Ai = Aiσ | i =

1, . . . , n}.
• There does not exist an atom B occurring in R, which is distinct from

all Ai (i = 1, . . . , n) such that there is a substitution ϑ with Bσϑ ∈
U∗rel(P, G).

Definition 6. (Stratified Relevant Subprogram) Let P be a program and
G a ground goal. The stratified relevant subprogram for P and G w.r.t. an
I-partial level mapping lP , denoted by P ∗G, is the set of all rules R′ defined as
follows: For any rule R in P ′G, let R′ be the rule which is obtained by removing
all non-ground literals from R. Note that by definition the head and at least one
of the body literals of R′ are never removed.

The underlying intuition is that we use rules from ground(P ) where the head and
all body atoms are contained in U∗rel(P, G), as they are those which contribute
to the well-founded semantics in the sense of condition (WFi) in Definition 3.
In order to accommodate condition (WFii) from Definition 3 it suffices if one
witness of unusability3 remains in the body or the rule, which is the rationale
behind the remaining definition of stratified relevant subprogram.

Definition 7. (Stratified Relevance) Stratified Relevance states that for all
ground queries F and all normal logic programs G we find that P entails G under
semantics S iff P ∗G entails G under S.

Proposition 1. The well-founded semantics satisfies Stratified Relevance.

Proof. (Proof Sketch) Given a normal program P and its well-founded model
M , we have that by Theorem 1, there exists an M -partial level mapping l for P
such that P satisfies (WF ) with respect to M and l. Let this level mapping be
lP as defined above. The proof follows by induction on the evaluation of L under
the well-founded semantics. We have to consider two cases: L = A is a positive
literal and L = ¬A is a negative literal. Let A ∈ dom(lP ), suppose lP (A) = α
and let M(L) = M∗(L)(induction hypothesis).

Case i. A ∈ M . By (WFi) we have that there is at least one rule R = A ←
L1, .., Ln in ground(P ) such that Li ∈ M and lP (A) ≥ lP (Li) for all i. We have
that A ∈ TP (WP ↑ α) and all Li ∈ body(R) are true in WP ↑ α. We see that A
refers to all these literals or, in other words, A > Li, i = 1, .., n.
3 These are literals satisfying one of the unfoundedness conditions [2].
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Induction step: prove that Li ∈ M∗ for all i. By definition of P ∗←L, R ∈ P ∗←L

and by induction hypothesis we have that A ∈ M∗. By definition of WP and by
relevance, from R ∈ P ∗←L and A ∈ M∗, it follows that Li ∈ M∗ for all i.

Case ii is similar to Case i. 
�
The proposition shows that P ∗←L by its definition contains all the necessary
information for L’s derivation or non-derivability.

The next proposition concerns computability of the stratified relevant sub-
program and is also crucial for our decidability results.

Proposition 2. Let P be a program with a level mapping characterization l and
let G be a goal such that U∗rel(P, G) is finite. Then P ∗G is finite and computable
in finite time.

Proof. P consists of finitely many rules, so it suffices to show the proposition
for a program consisting of a single rule R. Let n be the number of body literals
occurring in R, and let A be the head of R. A finite computation of P ∗G is possible
by means of the following algorithm:

1. For all selections of m atoms A1, . . . , Am occurring in the body of P , where
1 < m ≤ n, do the following.
(a) For all selections of m + 1 elements B, B1, . . . , Bm from U∗rel(P, G) do

the following
i. If the unification problem {A = B} ∪ {Ai = Bi | i = 1, . . . , m} is

solvable with most general unifier σ, then do the following.
A. If m = n then add Rσ to P ′.
B. If m < n then for all selections of a body literal C from R which

is distinct from A1, . . . , Am and for all selections of an element
D from U∗rel(P, G), check whether there is a substitution ϑ such
that Cσθ = D. If such a ϑ does not exist, then add rσ to P ′.

2. For every rule R in P ′, add to P ∗G the rule R′ obtained from R by removing
all non-ground literals.

It is straightforward to check that all selections made in the algorithm are selec-
tions from finite sets. Furthermore, the computation of the most general unifiers
is terminating by well-known algorithms. So the algorithm terminates after finite
time. The reader will also have no difficulties verifying that the program result-
ing from the algorithm is indeed the desired stratified relevant subprogram. 
�

4 Program Classes with Semi-decidable Query Evaluation

4.1 Programs Finitely Recursive on Lower Levels

In this subsection we define a class of normal logic programs whose consequences
under the well-founded semantics are semi-decidable, even though they admit
function symbols (and, hence, infinite domains) and recursion. The idea is to
restrict recursion to prevent infinite sequences of recursive calls without repeats.
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This follows the ideas presented in [5] by Bonatti, where a class of finitary
programs under the stable model semantics was defined. The intuition behind it
is the following: a literal is brought into the well-founded model M in two ways:
either by TP or UP . But in both cases there must exist a dependency between the
consequence atom and the precedence atoms in the dependency graph. With the
help of stratified relevance from Section 3 we can define the relevant subprogram
in such a way that it contains only rules with literals of the same or lower level
than that of query atoms.

The following definition captures the desired restriction on recursion.

Definition 8. (Programs Finitely Recursive On Lower Levels) A pro-
gram P is finitely recursive on lower levels w.r.t a ground query G iff there ex-
ists a level mapping characterization l of the well-founded model of P such that
each ground atom A depends on finitely many ground atoms of level less then or
equal to the level of G. In other words, the cardinality of the set {B | A � B and
l(B) ≤ l(G)} is finite for all A.

Now, given a program which is finitely recursive on lower levels, we can prove
finiteness of the stratified relevant universe and subprogram.

Proposition 3. Given a program P , a (partial) interpretation I and an I-
partial level mapping lP . The following condition holds: if P is finitely recursive
on lower levels, then for all ground queries G, U∗rel(P, G) and P ∗G are finite.

Example 1. (Programs Finitely Recursive On Lower Levels)
P : {p(f(X)) ← p(X), q(X),

q(a) ← s(f(X)), r(X),
r(a) ← r(a).} G :← p(f(a)).

Both Urel(P, G) and PG are infinite for this program. It happens because of
the second rule: q(a) depends on an infinite sequence of atoms of the form
s(fm(X)), m > 0 and r(fn(X)), n ≥ 0. However, given a level mapping charac-
terization lP (as defined above), we have lP (p(f(a))) = 3 and lP (r(a)) = 1, and
at the same time {s(fm(a)), r(fn(a))|m > 1, n > 0} � dom(l). It leaves all the
rules q(a) ← s(fm(a)), r(fn(a)) with m > 1, n > 0 out of our P ∗G:

P
′
G : {p(f(a)) ← p(X), q(a), P ∗G : {p(f(a)) ← q(a),

q(a) ← s(f(X)), r(a), q(a) ← r(a),
r(a) ← r(a)} r(a) ← r(a)}

4.2 Programs of Finite Level

In this subsection we define another class of programs with semi-decidable query
evaluation: programs of finite level. The property of stratified relevance is also
central for their definition, but instead of limiting certain dependency paths to
be finite, we now require finiteness of every level in the level mapping character-
ization of the well-founded model. Indeed, if we drop the ”finite recursiveness”
condition, we have to use other means that would guarantee semi-decidability.
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To provide ”safe” query evaluation, we have to take care of two aspects. First,
when we ”stay” within the same level, then a dependency path which we might
take must be finite. Second, there is only a finite number of levels to look at.
The first condition given above can be solved by introducing a class of programs
with finite levels, the second by restricting the level of query atoms.

Definition 9. (Programs of Finite Level) A logic program P is called of
finite level if there exists a level mapping characterization of the well-founded
model of P with a level mapping l such that l−1(α) is finite for all ordinals α.

In other words, in programs of finite level, the number of atoms of level α,
denoted as Λα, is finite for all α.

Definition 10. (ω-Restricted Query or Goal) A query or goal G is ω-
restricted (w.r.t. some I-partial level mapping l) iff all its atoms are of level
less than ω.

Suppose P is a program and G a ground ω-restricted query. Due to the stratifi-
cation of the well-founded semantics, we can use the stratified relevant universe,
viz. the relevant universe restricted to the levels less than or equal to those of
query atoms.

Proposition 4. Given a program P , a (partial) interpretation I and an I-
partial level mapping lP . If P is a program of finite level and G an ω-restricted
ground query, then U∗rel(P, G) and P ∗G are finite.

Example 2. (Programs Of Finite Level)
P : {p(a),

p(f(X)) ← p(X),
q(a) ← ¬p(X),
q(f(X)) ← q(X),
r(a) ← ¬p(a), q(X).} G :← r(a).

An example level mapping characterization of the well-founded model of P is
given by lP (as defined in Section 3):

lP l−1
P

: :
n p(fn−1(a)),¬q(fn−2(a))
: :
2 p(f(a)),¬r(a),¬q(a)
1 p(a)
0 ∅

The level mapping lP for this program has finite levels, even though its depen-
dency graph contains infinite dependency chains of atoms with predicates q and
p. We see that it leaves us with a finite stratified relevant subprogram, P ∗G:

U∗rel(P, G) : {r(a), p(a), q(a), p(f(a))}
P ∗G : {p(a); p(f(a)) ← p(a); q(a) ← ¬p(a);

q(a) ← ¬p(f(a)); r(a) ← ¬p(a), q(a)}
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5 Decidability Results

Due to finiteness of U∗rel(P, G) and P ∗G shown for both classes of programs in
Propositions 3 and 4, we prove that query evaluation for programs is decidable.

Theorem 2. Given a program P and a level mapping characterization lP of the
well-founded model of P , the following conditions hold:

i if P is finitely recursive on lower levels, then for all ground queries G, the
truth value of G under the well-founded model of P is decidable.

ii if P is a program of finite level and G a ground ω-restricted query, then the
truth value of G under the well-founded model of P is decidable.

It follows immediately that existentially quantified goals are semi-decidable. The
existential closure of G is denoted by ∃G.

Corollary 1. Given a program P and a level mapping characterization lP of
the well-founded model of P , the following conditions hold:

i if P is finitely recursive on lower levels, then for all ground queries of the
form ∃G, the truth value of ∃G under the well-founded model of P is semi-
decidable.

ii if P is of finite level, then for all ω-restricted queries ∃G, the truth value of
∃G under the well-founded model of P is semi-decidable.

6 Related Work and Conclusions

The work on programs finitely recursive on lower levels and of finite level was
inspired by the paper of Bonatti [5] on finitary programs. Work in a similar
direction comprises papers on acyclic programs [8], acceptable programs [9], Φ-
accessible programs [10,11], and (locally) stratified programs [12,13]. This work
concerns Prolog or semantics other than the well-founded semantics. Neverthe-
less, some results carry over directly to the well-founded semantics by means of
well-known relationships between different semantics.

Methods for top-down computation of queries under the WFS are presented
in [14,4], lacking, however, a satisfactory non-procedural characterization of the
fragment of the well-founded semantics which is being computed.

We presented (semi-)decidable fragments of the well-founded semantics. The
corresponding program classes constitute expressive fragments of logic program-
ming under the well-founded semantics. Our results show how queries can be
answered by using only a strict subprogram of the ground instantiation of the
program, that is, the (stratified) relevant subprogram.

While our results are–to the best of our knowledge–the very first ones which
address decidability under the well-founded semantics, we also notice a major
drawback of the initial results presented in this paper: Decidability under the
described fragments rests on the knowledge of a suitable level mapping charac-
terization, the computation of which is in general itself undecidable. However,
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our results simplify the matter considerably, as programmers usually keep track
of the syntactic and semantic dependencies between literals occurring in their
programs, which essentially boils down to keeping track of a suitable level map-
ping. We therefore believe that this restriction of our results–albeit not entirely
satisfactory from a theoretical perspective–is much less severe in practice. This
issue, however, will need to be investigated in future work.
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Abstract. We present a vision of smart, goal-oriented web services that
reason about other services’ policies and evaluate the possibility of fu-
ture interactions. We assume web services whose behavioural interface
is specified in terms of reactive rules. Such rules can be made public,
in order for other web services to answer the following question: “is it
possible to inter-operate with a given web service and achieve a given
goal?”. In this article we focus on the underlying reasoning process, and
we propose a declarative and operational abductive logic programming-
based framework, called WAVe. We show how this framework can be
used for a-priori verification of web services interaction.

1 Introduction

Service Oriented Computing (SOC) is rapidly emerging as a new programming
paradigm, propelled by the wide availability of network infrastructures, such
as the Internet. Web service-based technologies are an implementation of SOC,
aimed at overcoming the intrinsic difficulties of integrating different platforms,
operating systems, languages, etc., into new applications. It is in the spirit of
SOC to take off-the-shelf solutions, like web services, and compose them into
new applications. Service composition is very attractive for its support to rapid
prototyping and possibility to create complex applications from simple elements.

If we adopt the SOC paradigm, how to exploit the potential of a growing base
of web services, in order to decide which service could be used for inter-operating,
becomes a strategic issue. A partial answer is given by service discovery through
yellow pages or other registries. This solves part of the problem: as through
discovery we only know that there are some potentially useful services, but un-
derstanding whether interacting with them will be profitable or detrimental is
far from being a trivial question. In this article we consider web serivces that
need to understand, pairwise, and based on a run-time exchange of policies, if
they can inter-operate or not. We present a vision of smart, goal-oriented web
services that reason about other services’ specifications, with the aim to separate
out those that can lead to a fruitful interaction. We assume that each web ser-
vice publishes, alongside with its WSDL, its behavioural interface specification.
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Fig. 1. The architecture of WAVe

By reasoning on the information available about other web services’ behavioural
interface, each web service can verify which goals can be reached by interacting.

To achieve our vision, we propose a proof theoretic approach, based on com-
putational logic – in fact, on abductive logic programming. We formalise service
policies in a declarative language which is a modification of the SCIFF language
[7]. Policies are defined with integrity constraints (ICs): a sort of reactive rules
used to generate and reason about expectations on possible evolutions of a given
interaction. We believe that, as advocated by Alferes et al. [9], an approach
based on logic programming allows us to express knowledge in form of rules and
to make inference with them. As claimed in [11], a rule-based approach to reac-
tivity on the Web provides several benefits over conventional approaches. Rules
are easy to understand for humans, and requirements often already come in the
form of rules; they are well-suited for processing and analyzing by machines, and
can be managed in a centralized knowledge base or distributed over the Web.

Based onSCIFF, we propose a new declarative semantics and a proof-procedure
that combines forward, reactive reasoning with backward, goal-oriented reason-
ing. The new framework, called WAVe (Web-service Abductive Verification), fea-
tures a language for logically defining the behavioural interface of web services
(suitably encoded in RuleML), primitives for acquiring rules from the web and
reasoning about them, and goal-directed discovery of web services with whom
interaction could be successful.

2 The WAVe Framework

Fig. 1 depicts our general reference architecture. The layered design of a web
service has WAVe at the top of the stack, performing reasoning based on its own
knowledge and on the specifications of other web services. Web services exchange
their specifications/policies encoded in a Rule Interchange Format (RIF).

In WAVe, the observable behaviour of web services is represented by events :
Event ::= H(Sender, Receiver, Message, T ime).

Since we focus on (explicit) interaction between web services, events represent
exchanged messages. Events are hypothesised, when reasoning about the capa-
bilities of a given service. Each web service tries to foresee the future course of
events that will happen, assuming that its own policies, encoded in the published
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specifications, will be respected by the other peers. Expected events are atoms
that represent a message that the web service ws is expecting will be exchanged:

Expectation ::= Ews(Sender, Receiver, Message, T ime).
The subscript indicates the web service holding the expectation. If a correspond-
ing event (H) indeed happens, the expectation is fulfilled, otherwise it is violated.

Web service specifications in WAVe are relations among happened and ex-
pected events, expressed by an Abductive Logic Program (ALP). In general, an
ALP [15] is a triplet 〈P, Ab, IC〉, where P is a logic program, Ab is a set of pred-
icates named abducibles, and IC is a set of integrity constraints. Intuitively, P
contains definitions of predicates, Ab represents unknown predicates (not defined
in P ), and IC constrains the way elements of Ab are hypothesised, or “abduced”.
Reasoning in ALP is usually goal-directed: given a goal G, the aim is to find a
set of hypotheses Δ ⊆ Ab such that P ∪ Δ |= G and P ∪ Δ |= IC.

Definition 1 (Behavioural Interface Specification). Given a web service
ws, its behavioural interface specification Pws is the ALP 〈KBws, Ews, ICws〉,
where KBws is ws’s Knowledge Base, Ews is ws’s set of abducible predicates,
and ICsws is ws’s set of Integrity Constraints.

Ews includes predicates not defined in KBws, as well as expectations.
KBws is a set of clauses which declaratively specifies pieces of knowledge of

the web service. In WAVe, clauses can contain abducible literals (with signature
in Ews), as well as constraints à la Constraint Logic Programming (CLP) [13].

IC ::= Body → Head
Body ::= (Event|Expectation)[∧(Event|Expectation|Atom|Constr)]�

Head ::= Disjunct [ ∨ Disjunct ]� | false
Disjunct ::= (Expectation | Constr)[ ∧ (Expectation | Constr | Atom)]�

(1)

Integrity Constraints (ICs) are forward rules, that can involve the various types
of literals in our language, namely expectations, happened events, literals of
predicates defined in the KB, other abducible predicates, and CLP constraints.
The syntax of ICws (Eq. 1) is a modification of the integrity constraints in the
SCIFF language [7]. In particular, in WAVe each expectation is labelled with the
name of the web service that is expecting the event. Happened events (H) are
always acquired from the external in SCIFF, while in WAVe they are abducible
during reasoning phase. Intuitively, the operational behaviour of ICs is similar
to forward rules: whenever the body is true, the head should also be proven true.

3 Modeling in WAVe

Let us consider the following running example, showing how the involved services
are modeled in WAVe. Evelyn is a customer who wants to obtain an electronic
book by tomorrow, encrypted with algorithm best; she can pay cash or by credit
card (cc), and knows two shops potentially able to satisfy her requirements.

The first shop accepts payments only with credit card and supports the en-
cryption of goods. In our syntax, we can express that if a request arrives, then
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the shop will plan to reply asking for a payment, and expect the customer to pay
for the good. Thus, the eShop1 raises an expectation about its own behaviour
(I should ask for money), and one about the behaviour of the peer (you should
pay)1:

H(X, eShop1, request(Item, enc(Alg)), Ts)
→EeShop1(eShop1, X, ask(pay(Item, cc)), Ta)
∧EeShop1(X, eShop1, pay(Item, cc), Tcc).

(eShop1.1)

If the shop received the money at least 48 hours earlier, it will deliver the item:

H(X, eShop1, request(Item, enc(Alg)), Ts)
∧ H(X, eShop1, pay(Item, How), Tp)

→EeShop1(eShop1, X, deliver(Item, enc(Alg)), Ts), Tp + 48 < Ts

(eShop1.2)

eShop2 accepts payments either by cash or credit card:

H(X, eShop2, request(Item, enc(Alg)), Ts)
→EeShop2(X, eShop2, pay(Item, How), Tp), How::[cc, cash]
∧EeShop2(X, eShop2, pay(Item, How), Tcc).

(eShop2.1)

Furthermore, it delivers goods in encrypted form only if the client has paid with
credit card:

H(X, eShop2, pay(Item, cash), Tp)
→EeShop2(eShop2, X, deliver(Item, enc(none)), Ts)

(eShop2.2)

H(X, eShop2, pay(Item, cc), Tp)
→EeShop2(eShop2, X, deliver(Item, enc(best)), Ts)

(eShop2.3)

In this simple example, Evelyn knows the two shops and their URL. In a
real world situation, the addresses could be collected from a yellow-pages ser-
vice, or by advertisements broadcasted by the shops or sent directly to Evelyn.
The known services, togheter with their corresponding URL, can be recorded in
Evelyn’s KB by using a list of facts of the type known service(Service, URL)
(e.g. known service(eShop1, ”http : //www.eShop1.com”)).

Evelyn’s goal is to find a web service that provides her the book within 24
hours

Gevelyn = Eevelyn(S, evelyn, deliver(book, enc(best)), T ), T ≤ 24. (Goal)

Evelyn’s ICs say that upon request of payment, she will perform the payment,
either by credit card or by cash:

H(X, evelyn, ask(pay(Item, How)), Tp)
→Eevelyn(evelyn, X, pay(Item, How), Tp), How::[cc, cash]

(evelyn1)

1 The symbol “::” represents a domain constraint.
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Moreover, Evelyn has a plan about how she could get an item; if she wants an
item to be delivered her, she should request someone to deliver it:

Eevelyn(S, evelyn, deliver(Item, enc(How)), Td)
→Eevelyn(evelyn, S, request(Item, enc(How)), Tr), Tr < Td,

f ind conformant(S).
(evelyn2)

Predicate find conformant is also defined in Evelyn’s KB:

find conformant(Service) ← known service(Service,URL),
download(URL, ICS), impose ics(ICS).

Primitive download retrieves information from the web (and can be imple-
mented, e.g., with the PiLLoW library [12]). In our framework, web services
expose their behavioural interface on the web, so in this case Evelyn downloads
the ICs of the peer she wants to interact with. Finally, impose ics is a meta-
predicate that adds a set of implications to the current set of ICs, and is used
by Evelyn to put its own policies togheter with those of the other peer.

4 Declarative and Operational Semantics

We assume that all web services have their own behavioural interface specified
in the language of ICs. This behavioural interface could be thought of as an
extension of WSDL, that can be used by other web services to reason about the
specifications, or to check if inter-operability is possible.

The web service initiating the interaction has a goal G, which is a given state
of affairs. Typical goals are to access resources, retrieve information, or obtain
services from another web service. G can be any conjunction of expectations,
CLP constraints, and any other literals, in the syntax of ICws Disjuncts (Eq. 1).

A web service ws reasons about the possibility to achieve a goal G by interact-
ing with a peer ws′ using KBws, ICws, G, and the information obtained about
ws′’s policies, ICws′ (Fig. 1). The idea is to obtain, through abductive reasoning,
a possible course of events that together with KBws entails ICws ∪ICws′ and G.

Definition 2 (Possible interaction about G). A possible interaction about
a goal G between two web services ws and ws′ is an A-minimal [6] set HAP ∪
EXP ∪ ΔA such that Eq. 2, 3 and 4 hold:

KBws ∪ HAP ∪ EXP ∪ ΔA |= G (2)

KBws ∪ HAP ∪ EXP ∪ ΔA |= ICws ∪ ICws′ (3)

KBws ∪ HAP ∪ EXP ∪ ΔA |= EX(X, Receiver,Action, T ime) → (4)

H(X, Receiver,Action, T ime).

where HAP is a conjunction of H atoms, EXP a conjunction of E atoms, and
ΔA a conjunction of abducible atoms.

We ground the notion of entailment on a model theoretic semantics defined for
Abductive Disjunctive Logic Programs [6], a slight modification of the semantics
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presented in [17]. Rule 4 means that we assume all the web services will behave
rationally, i.e., they will perform all actions that fulfil their own expectations.

Note that currently in our framework web services do not expose their knowl-
edge base, but only the integrity constraints. However, in general integrity con-
straints can involve predicates defined in the KB. In this case, the web service ws
that reasons upon the specifications of ws′ will make hypotheses on the possible
truth value of the predicates defined in the (unknown) KBws′ ; such hypotheses
are abduced and recorded in the set ΔA. 2

Among all possible interactions about G, some of them are fruitful, and some
are not. An interaction only based on expectations which are not matched by
corresponding events is not fruitful: for example, the goal of ws might not have
a corresponding event, thus G is not actually reached, but only expected. Or, one
of the web services could be waiting for a message from the other fellow, which
will never arrive, thus undermining the inter-operability.

We select, among the possible interactions, those whose history satisfies all
the expectations of both the web services. After the abductive phase, we have a
verification phase in which there are no abducibles, and in which the previously
abduced predicates H and E are now considered as defined by atoms in HAP
and EXP, and they have to match. If there is a possible interaction satisfying
all expectations, then ws has found a sequence of actions that obtains the goal.

Definition 3 (Possible interaction achieving G). Given two web services,
ws and ws′, and a goal G, a possible interaction achieving G is a possible inter-
action about G satisfying (for all X ∈ {ws, ws′})

HAP ∪EXP |= EX(S, R, Action, T ) ↔ H(S, R, Action, T ) (5)

Intuitively, the “→” implication in Eq. 5 avoids situations in which a web service
waits for an event that the peer will never produce. The “←” implication avoids
that one web service sends unexpected messages, which in the best case may not
be understood (and in the worst cases may lead to faulty behaviour).

4.1 Operational Semantics

The operational semantics is a modification of the SCIFF proof-procedure [7].
SCIFF was initially developed to specify and verify agent interaction proto-
cols in open environments. It processes events drawing from HAP and abduces
expectations, checking that all of them are fulfilled by a happened event.

WAVe extends SCIFF and abduces H events as well as expectations. The
events history is not taken as input, but all possible interactions are hypothesised.
Moreover, in WAVe events not matched by an expectation (accepatble in an
open scenario) cannot be part of a possible interaction achieving the goal. For
this reason, in WAVe a new transition labels each H events with an expected
flag as soon as a matching expectation is abduced. At the end of the derivation,
2 Possibly, the result of the abductive phase can be sent to the peer ws′, that can accept

or refuse such a proposal. In other words, a contracting phase could be initiated.
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unflagged H will cause failure. Also, in WAVe new ICs can be dinamically added.
A transition accounts for this need: if the selected literal is impose ics(X) it adds
the set X to the ICs.

Finally, note that soundness and completeness results, proven for the SCIFF
proof-procedure under reasonable assumptions, also hold for WAVe. In partic-
ular, adding dynamically new ICs can be performed in SCIFF, because the
success nodes do not change if ICs are dynamically added with respect to the
case in which they are stated from the beginning of the derivation. 3

5 Verification

WAVe supports different types of verification, using the same description of web
services in terms of ICs. For space reasons, we will consider only the a-priori ver-
ification, in which web services check whether there exists a possible interaction
for obtaining the desired goal. After finding the possible interactions achieving
its goal, the service can submit them to the other party, to establish an agree-
ment, which could be considered as a contract, where the allowed interactions are
(implicitly) listed. At this step both web services know which are the approved
communications, so if they stick to what has been agreed the interaction should
be successful. However, at execution time violations could always happen: on-
the-fly verification aims at finding such possible violations. We have addressed
this issue in [5], where the same web service specification is used to verify if the
interacting parties actually behave in a conformant manner.

5.1 A-Priori Verification

Starting from her goal (Eq. Goal), Evelyn abduces that she wants the electronic
book delivered to her within one day (24 hours):

Eevelyn(S, evelyn, deliver(book, enc(best)), T ), T ≤ 24. (6)

This expectation triggers the Rule evelyn2, and another expectation is abduced.
By rationality (Eq. 4), such expectation becomes a happened event

H(evelyn, S, request(book, enc(best)), Tr), Tr < 24. (7)

Now, Evelyn invokes find conformant , that will choose one of the shops,
download its interface, and test if it is conformant. Let us suppose to start with
eShop1: rule eShop1.1 will trigger, as its antecedent is true because of event (7).

eShop1 is thus supposed to generate two expectations: it will ask Evelyn to
pay by cc, and will expect Evelyn to do it. Again, by rationality, the expectation

3 One way to see this property is using a lemma of the soundness theorem [7]. To prove
that an IC can be added dynamically, it is enough to insert in the body a fictitious
event and add such event dynamically. Propagation of this IC is thus delayed until
such event occurs. The effect is the same as adding the IC dynamically.
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of eShop1 about its own behaviour becomes a happened event, and Evelyn will
react to it by performing the payment:

H(eShop1, evelyn, ask(pay(book, cc)), Ta) ∧ How :: [cc, cash]
H(evelyn, eShop1, pay(book, cc), Tp).

eShop1 can now trigger its Rule eShop1.2, generating an expectation about its
own behaviour, that will be translated by rationality into the event:

H(eShop1, evelyn, deliver(book, enc(best)), Ts) ∧ Tp + 48 < Ts.

Now the proof-procedure tries to match such event with Evelyn’s expectation
(6). The propagation of CLP constraints infers Tp < −24, reminding Evelyn that
she should have made her request one day earlier. The proof-procedure signals
a deadline violation: there is no way to obtain the book on time from eShop1.

Evelyn can now download the behavioural interface of eShop2. Since the be-
haviour of eShop2 depends on the chosen payment method, we have two possible
interactions. In the first one she pays by cash, obtaining the following history:

H(evelyn, eShop2, request(book, enc(best)), Tr), Tr < 24
H(eShop2, evelyn, ask(pay(book, cash)), Ta)
H(evelyn, eShop2, pay(book, cash), Tp)
H(eShop2, evelyn, deliver(book, enc(none)), Ts).

This time there are no missed deadlines, but the book is sent unencrypted:
Evelyn’s expectation (6) is not matched by any event. Luckily, Evelyn has
another branch to explore, i.e. the one in which she actually pays by cc. In this
case, eShop2 will use the best algorithm (rule eShop2.3): the generated history
satisfies all expectations of both peers, thus eShop2 is considered conformant.

6 Rule Mark-Up

In WAVe, the ICs can be exchanged between web services, as well as advertised
together with their WSDL. As the exchanged information is made of rules, the
natural choice for the web-friendly interchange format is RuleML [3].

WAVe embeds two types of rules: ICs and clauses. ICs are forward rules, used
to react to events and generate new expectations. Clauses are backward rules,
used to plan, reason upon events and perform proactive reasoning. RuleML 0.9
contains a direction attribute to represent both kinds of rules. Being based on
abduction, WAVe can deal both with negation as failure and negation by default,
that have an appropriate tagging in RuleML. In this work, we only used standard
RuleML syntax; in future work we might be interested in distinguishing between
defined and abducible predicates, or between expectations and events.

WAVe was implemented in SICStus Prolog, which contains an implementation
of PiLLoW [12], making it easy to access information on the web, and an XML
parser, useful to easily implement a bidirectional RuleML parser.
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7 Discussion and Related Work

WAVe is a framework for defining declaratively the behavioural interface of web
services, and for testing the possibility of fruitful interaction between them. It
uses and extends a technology initially developed for online compliance verifica-
tion of agent interaction to protocols [7]. The extension of SCIFF to the context
of web services, centering around the concept of policies seems very promising.

In a companion paper [6] we propose the use of SCIFF in the context of
discovery engines. We present a fundamentally different architecture, in which
a third party (i.e. a discovery engine) reasons on behalf of the requesting web
service. Specifically, we focus on the “contracting” stage of service discovery, in
which, following ontological matchmaking, the third party needs to understand
if there exists a concrete interaction between the “requestor” and a “provider”
web service that achieves a given requestor’s objective. D ifferently from what we
show here, such interaction is not defined based on a “total expectation” concept
(see Section 4, Eq. 5), but it may include “unexpected” events, which leads to a
different semantics. This is due to the different architecture, in which the third
party has to reason under the assumption of incomplete knowledge – thus even
sequences of events that are not totally expected by the third party may lead to
achieving the requestor’s objective. We are working on the combination of the
two proposed approaches into a unified architecture.

The idea of policies for web services and policy-based reasoning is also adopted
by many other authors, among which Finin et al. [14], and Bradshaw et al. [18].
The first has an emphasis on representation of actions, the latter on the deontic
semantic aspects of web service interaction. Previous work on SCIFF addressed
the links between deontic operators and expectation-based reasoning [8].

The outcome of the WAVe reasoning process could be intended as a sort of
“contract agreement”, provided that each peer is tightly bounded to the policies
it has previously published. The dynamic agreement on contracts (e-contracting)
is addressed in [10], where Situated Courteous Logic is adopted for reasoning
about rules that define business provisions policies.

In this work we mainly focus on the reasoning process upon the policies of
both the peers, without considering ontologies. Many other approaches focus on
the latter issue (as for example OWL-S [2]), hence our proposal could be seen
as a complementary functionality. In [1] it is proposed a language for semantic
web service specification (using logic), and a notion of mediator is introduced
to overcome differences between ontologies. In [16], the authors present a frame-
work for automated web service discovery that uses the Web Service Modeling
Ontology (WSMO) as the conceptual model, and distinguishes between a discov-
ery phase and a contracting phase. Both the approaches perform hypothetical
reasoning; however, in [16,1], only the client’s goal is considered, while in WAVe

also behavioural interfaces are taken into account. Therefore, our framework can
be exploited to verify interoperability between behavioural interfaces [4].
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Abstract. We present a novel approach to fuzzy dl-programs under the answer
set semantics, which is a tight integration of fuzzy disjunctive programs under
the answer set semantics with fuzzy description logics. From a different perspec-
tive, it is a generalization of tightly integrated disjunctive dl-programs by fuzzy
vagueness in both the description logic and the logic program component. We
show that the new formalism faithfully extends both fuzzy disjunctive programs
and fuzzy description logics, and that under suitable assumptions, reasoning in
the new formalism is decidable. Furthermore, we present a polynomial reduction
of certain fuzzy dl-programs to tightly integrated disjunctive dl-programs. We
also provide a special case of fuzzy dl-programs for which deciding consistency
and query processing have both a polynomial data complexity.

1 Introduction

The Semantic Web [1,6] aims at an extension of the current World Wide Web by stan-
dards and technologies that help machines to understand the information on the Web so
that they can support richer discovery, data integration, navigation, and automation of
tasks. The main ideas behind it are to add a machine-readable meaning to Web pages, to
use ontologies for a precise definition of shared terms in Web resources, to use KR tech-
nology for automated reasoning from Web resources, and to apply cooperative agent
technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer,
in form of the OWL Web Ontology Language [29,11], is currently the highest layer
of sufficient maturity. OWL consists of three increasingly expressive sublanguages,
namely, OWL Lite, OWL DL, and OWL Full. OWL Lite and OWL DL are essentially
very expressive description logics with an RDF syntax [11]. As shown in [9], ontology
entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability
in the description logic SHIF(D) (resp., SHOIN (D)). As a next step in the devel-
opment of the Semantic Web, one aims especially at sophisticated representation and
reasoning capabilities for the Rules, Logic, and Proof layers of the Semantic Web.
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In particular, there is a large body of work on integrating rules and ontologies, which
is a key requirement of the layered architecture of the Semantic Web. Significant re-
search efforts focus on hybrid integrations of rules and ontologies, called description
logic programs (or dl-programs), which are of the form KB = (L, P ), where L is a
description logic knowledge base and P is a finite set of rules involving either queries
to L in a loose integration (see especially [4,5,3]) or concepts and roles from L as unary
resp. binary predicates in a tight integration (see especially [21,22,16]).

Other works explore formalisms for handling uncertainty and vagueness / impreci-
sion in the Semantic Web. In particular, formalisms for dealing with uncertainty and
vagueness in ontologies have been applied in ontology mapping and information re-
trieval. Vagueness and imprecision also abound in multimedia information processing
and retrieval. Moreover, handling vagueness is an important aspect of natural language
interfaces to the Web. There are several recent extensions of description logics, ontology
languages, and dl-programs for the Semantic Web by probabilistic uncertainty and by
fuzzy vagueness. In particular, dl-programs under probabilistic uncertainty and under
fuzzy vagueness have been proposed in [14,13] and [27,28,15], respectively.

In this paper, we continue this line of research. We present tightly integrated fuzzy
description logic programs (or simply fuzzy dl-programs) under the answer set seman-
tics, which are a tight integration of fuzzy disjunctive programs under the answer set
semantics with fuzzy generalizations of SHIF(D) and SHOIN (D). Even though
there has been previous work on fuzzy positive dl-programs [27,28] and on loosely in-
tegrated fuzzy normal dl-programs [15], to our knowledge, this is the first approach to
tightly integrated fuzzy disjunctive dl-programs (with default negation in rule bodies).
The main contributions of this paper can be summarized as follows:

– We present a novel approach to fuzzy dl-programs, which is a tight integration of
fuzzy disjunctive programs under the answer set semantics with fuzzy description
logics. It is a generalization of the tightly integrated disjunctive dl-programs in [16]
by fuzzy vagueness in both the description logic and the logic program component.

– We show that the new fuzzy dl-programs have nice semantic features. In particular,
all their answer sets are also minimal models, and the cautious answer set semantics
faithfully extends both fuzzy disjunctive programs and fuzzy description logics.
Furthermore, the new approach also does not need the unique name assumption.

– As an important property, in the large class of fuzzy dl-programs that are defined
over a finite number of truth values, the problems of deciding consistency, cau-
tious consequence, and brave consequence are all decidable.

– In the extended report [17], we also present a polynomial reduction for certain
fuzzy dl-programs to the tightly integrated disjunctive dl-programs in [16]. Further-
more, we delineate a special case of fuzzy dl-programs where deciding consistency
and query processing have both a polynomial data complexity.

The rest of this paper is organized as follows. Section 2 recalls combination strategies
and fuzzy description logics. Section 3 introduces the syntax of fuzzy dl-programs and
defines their answer set semantics. In Section 4, we analyze some semantic properties
of fuzzy dl-programs under the answer set semantics. Section 5 summarizes our main
results and gives an outlook on future research. Note that further results and techni-
cal details are given in the extended report [17].
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Table 1. Combination strategies of various fuzzy logics

Łukasiewicz Logic Gödel Logic Product Logic Zadeh Logic

a ⊗ b max(a + b − 1, 0) min(a, b) a · b min(a, b)

a ⊕ b min(a + b, 1) max(a, b) a + b − a · b max(a, b)

a � b min(1 − a + b, 1)

{
1 if a � b

b otherwise
min(1, b/a) max(1 − a, b)

� a 1 − a

{
1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise
1 − a

2 Preliminaries

In this section, we illustrate the notions of combination strategies and fuzzy description
logics through some examples; more details are given in the extended report [17].

Combination Strategies. Rather than being restricted to an ordinary binary truth value
among false and true, vague propositions may also have a truth value strictly between
false and true. In the sequel, we use the unit interval [0, 1] as the set of all possi-
ble truth values, where 0 and 1 represent the ordinary binary truth values false and
true, respectively. For example, the vague proposition “John is a tall man” may be
more or less true, and it is thus associated with a truth value in [0, 1], depending on the
body height of John.

In order to combine and modify the truth values in [0, 1], we assume combination
strategies, namely, conjunction, disjunction, implication, and negation strategies, de-
noted ⊗, ⊕, �, and �, respectively, which are functions⊗, ⊕, � : [0, 1]× [0, 1]→ [0, 1]
and � : [0, 1]→ [0, 1] that generalize the ordinary Boolean operators ∧, ∨, →, and
¬, respectively, to the set of truth values [0, 1]. As usual, we assume that combina-
tion strategies have some natural algebraic properties [17]. Note that conjunction and
disjunction strategies are also called triangular norms and triangular co-norms [8],
respectively.

Example 2.1. The combination strategies of various fuzzy logics are shown in Table 1.

Fuzzy Description Logics. We now illustrate fuzzySHIF(D) and fuzzySHOIN (D)
[25,26] (see also [23]) through an example. There also exists an implementation of
fuzzy SHIF(D) (the fuzzyDL system; see http://gaia.isti.cnr.it/∼straccia). Intuitive-
ly, description logics model a domain of interest in terms of concepts and roles, which
represent classes of individuals and binary relations between classes of individuals,
respectively. A description logic knowledge base encodes in particular subset relation-
ships between classes of individuals, subset relationships between binary relations be-
tween classes, the membership of individuals to classes, and the membership of pairs
of individuals to binary relations between classes. In fuzzy description logics, these
relationships and memberships then have a degree of truth in [0, 1].
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Fig. 1. (a) Tra-function, (b) Tri-function, (c) L-function, and (d) R-function

Example 2.2 (Shopping Agent). The following axioms are an excerpt of the description
logic knowledge base L that conceptualizes a car selling web site:

Cars � Trucks � Vans � SUVs � Vehicles ; (1)

PassengerCars � LuxuryCars � Cars ; (2)

CompactCars � MidSizeCars � SportyCars � PassengerCars ; (3)

Cars � (∃hasReview .Integer ) � (∃hasInvoice.Integer )

� (∃hasResellValue .Integer ) � (∃hasMaxSpeed .Integer )

� (∃hasHorsePower .Integer) � . . . ; (4)

MazdaMX5Miata : SportyCar � (∃hasInvoice.18883)

� (∃hasHorsePower .166) � . . . ; (5)

MitsubishiEclipseSpyder : SportyCar � (∃hasInvoice .24029)

� (∃hasHorsePower .162) � . . . . (6)

Eqs. 1–3 describe the concept taxonomy of the site, while Eq. 4 describes the datatype
attributes of the cars sold in the site. Eqs. 5–6 describe the properties of some sold cars.

We may then encode “costs at most about 22 000 ” and “has a power of around 150
HP” in a buyer’s request through the following concepts C and D, respectively:

C = ∃hasInvoice.LeqAbout22000 and D =∃hasHorsePower .Around150 ,

where LeqAbout22000 = L(22000, 25000) and Around150 = Tri(125, 150, 175) (see
Fig. 1). The latter two equations define the fuzzy concepts of “at most about 22 000 ”
and “around 150 HP”. The former is modeled as a left shoulder function stating that if
the prize is less than 22 000 , then the degree of truth (degree of buyer’s satisfaction)
is 1, else the truth is linearly decreasing to 0 (reached at 25 000 ). In fact, we are
modeling a case were the buyer would like to pay less than 22 000 , though may still
accept a higher price (up to 25 000 ) to a lesser degree. Similarly, the latter models the
fuzzy concept “around 150 HP” as a triangular function with vertice in 150 HP.

The following fuzzy axioms are (tight) logical consequences of the above description
logic knowledge base L (under the Zadeh semantics of the connectives):

C(MazdaMX5Miata) � 1.0 ; C(MitsubishiEclipseSpyder ) � 0.32 ;

D(MazdaMX5Miata) � 0.36 ; D(MitsubishiEclipseSpyder ) � 0.56 .

3 Fuzzy Description Logic Programs

In this section, we present a tightly integrated approach to fuzzy disjunctive descrip-
tion logic programs (or simply fuzzy dl-programs) under the answer set semantics.
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We extend the tightly integrated disjunctive description logic programs in [16], which
have very nice features compared to other tightly integrated description logic programs;
see [16] for more details and a comparison to related works in the literature. Observe
that differently from [15] (in addition to being a tightly integrated approach to fuzzy dl-
programs), the fuzzy dl-programs here are based on fuzzy description logics as in [26].
Furthermore, they additionally allow for disjunctions in rule heads. We first introduce
the syntax of fuzzy dl-programs and then their answer set semantics.

The basic idea behind the tightly integrated approach in this section is as follows.
Suppose that we have a fuzzy disjunctive program P . Under the answer set seman-
tics, P is equivalent to its grounding ground(P ). Suppose now that some of the ground
atoms in ground(P ) are additionally related to each other by a fuzzy description logic
knowledge base L. That is, some of the ground atoms in ground(P ) actually represent
concept and role memberships relative to L. Thus, when processing ground(P ), we
also have to consider L. However, we only want to do it to the extent that we actually
need it for processing ground(P ). Hence, when taking a fuzzy Herbrand interpreta-
tion I ⊆HBΦ, we have to ensure that I represents a valid truth value assignment rela-
tive to L. In other words, the main idea behind the semantics is to interpret P relative
to Herbrand interpretations that also satisfy L, while L is interpreted relative to general
interpretations over a first-order domain. Thus, we modularly combine the standard se-
mantics of fuzzy disjunctive programs and of fuzzy description logics as in [15], which
allows for building on the standard techniques and the results of both areas. However,
our new approach here allows for a much tighter integration of L and P .

Syntax. We assume a function-free first-order vocabulary Φ with nonempty finite sets
of constant and predicate symbols. We use Φc to denote the set of all constant symbols
in Φ. We also assume pairwise disjoint (nonempty) denumerable sets A, RA, RD, I,
and M of atomic concepts, abstract roles, datatype roles, individuals, and fuzzy modi-
fiers, respectively; see [17]. We assume that Φc is a subset of I. This assumption guaran-
tees that every ground atom constructed from atomic concepts, abstract roles, datatype
roles, and constants in Φc can be interpreted in the description logic component. We do
not assume any other restriction on the vocabularies, that is, Φ and A (resp., RA ∪RD)
may have unary (resp., binary) predicate symbols in common.

Let X be a set of variables. A term is either a variable from X or a constant symbol
from Φ. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity
n � 0 from Φ, and t1, . . . , tn are terms. A literal l is an atom p or a default-negated
atom not p. A disjunctive fuzzy rule (or simply fuzzy rule) r is of the form

a1 ∨⊕1 · · · ∨⊕l−1 al ←⊗0 b1 ∧⊗1 b2 ∧⊗2 · · · ∧⊗k−1 bk∧⊗k

not�k+1 bk+1 ∧⊗k+1 · · · ∧⊗m−1 not�m bm � v,
(7)

where l � 1, m � k � 0, a1, . . . , al, bk+1, . . . , bm are atoms, b1, . . . , bk are either atoms
or truth values from [0, 1], ⊕1, . . . ,⊕l−1 are disjunction strategies, ⊗0, . . . ,⊗m−1 are
conjunction strategies, �k+1, . . . ,�m are negation strategies, and v ∈ [0, 1]. We refer to
a1∨⊕1 · · ·∨⊕l−1 al as the head of r, while the conjunction b1∧⊗1 . . .∧⊗m−1 not�m bm

is the body of r. We define H(r)= {a1, . . . , al} and B(r)= B+(r) ∪ B−(r), where
B+(r) = {b1, . . . , bk} and B−(r) = {bk+1, . . . , bm}. A disjunctive fuzzy program (or
simply fuzzy program P is a finite set of fuzzy rules of the form (7). We say P is a
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normal fuzzy program iff l =1 for all fuzzy rules (7) in P . We say P is a positive fuzzy
program iff l =1 and m = k for all fuzzy rules (7) in P .

A disjunctive fuzzy description logic program (or simply fuzzy dl-program) KB =
(L, P ) consists of a fuzzy description logic knowledge base L and a disjunctive fuzzy
program P . It is called a normal fuzzy dl-program iff P is a normal fuzzy program. It is
called a positive fuzzy dl-program iff P is a positive fuzzy program.

Example 3.1 (Shopping Agent cont’d). A fuzzy dl-program KB = (L, P ) is given by
the fuzzy description logic knowledge base L in Example 2.2 and the set of fuzzy
rules P , which contains only the following fuzzy rule (where x ⊗ y = min(x, y)):

query(x) ←⊗ SportyCar (x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasHorsePower (x, y2)∧⊗
LeqAbout22000 (y1) ∧⊗ Around150 (y2) � 1 .

Informally, the predicate query collects all sports cars, and ranks them according to
whether they cost at most around 22 000 and have around 150 HP (such a car may be
requested by a car buyer with economic needs). Another fuzzy rule is given as follows
(where �x= 1 − x and Around300 =Tri(250, 300, 350)):

query ′(x) ←⊗ SportyCar (x) ∧⊗ hasInvoice(x, y1) ∧⊗ hasMaxSpeed (x, y2)∧⊗
not�LeqAbout22000 (y1) ∧⊗ Around300 (y2) � 1 .

Informally, this rule collects all sports cars, and ranks them according to whether they
cost at least around 22 000 and have a maximum speed of around 300 km/h (such a
car may be requested by a car buyer with luxurious needs). Another fuzzy rule involving
also a disjunction in its head is given as follows (where x ⊕ y = max(x, y)):

Small(x)∨⊕Old(x) ←⊗ Car(x) ∧⊗ hasInvoice(x, y) ∧⊗ not�GeqAbout15000 (y) � 0.7 .

This rule says that a car costing at most around 15 000 is either small or old. Observe
here that Small and Old may be two concepts in the fuzzy description logic knowledge
base L. That is, the tightly integrated approach to fuzzy dl-programs under the answer
set semantics also allows for using the rules in P to express relationships between
the concepts and roles in L. This is not possible in the loosely integrated approach to
fuzzy dl-programs under the answer set semantics in [15], since the dl-queries of that
framework can only occur in rule bodies, but not in rule heads.

Semantics. We now define the answer set semantics of fuzzy dl-programs via a gener-
alization of the standard Gelfond-Lifschitz transformation [7].

In the sequel, let KB = (L, P ) be a fuzzy dl-program. A ground instance of a rule
r∈P is obtained from r by replacing every variable that occurs in r by a constant sym-
bol from Φc. We denote by ground(P ) the set of all ground instances of rules in P . The
Herbrand base relative to Φ, denoted HBΦ, is the set of all ground atoms constructed
with constant and predicate symbols from Φ. Observe that we define the Herbrand base
relative to Φ and not relative to P . This allows for reasoning about ground atoms from
the description logic component that do not necessarily occur in P . Observe, however,
that the extension from P to Φ is only a notational simplification, since we can always
make constant and predicate symbols from Φ occur in P by “dummy” rules such as
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constant(c)← and p(c)← p(c), respectively. We denote by DLΦ the set of all ground
atoms in HBΦ that are constructed from atomic concepts in A, abstract roles in RA,
concrete roles in RD, and constant symbols in Φc.

We define Herbrand interpretations and the truth of fuzzy dl-programs in them as fol-
lows. An interpretation I is a mapping I : HBΦ → [0, 1]. We write HBΦ to denote the
interpretation I such that I(a)= 1 for all a∈HBΦ. For interpretations I and J , we write
I ⊆J iff I(a)� J(a) for all a∈HBΦ, and we define the intersection of I and J , de-
noted I ∩J , by (I ∩J)(a)= min(I(a), J(a)) for all a∈HBΦ. Observe that I ⊆HBΦ

for all interpretations I . We say that I is a model of a ground fuzzy rule r of the form (7),
denoted I |= r, iff

I(a1) ⊕1 · · · ⊕l I(al) � I(b1) ⊗1 · · · ⊗k−1 I(bk) ⊗k

�k+1 I(bk+1) ⊗k+1 · · · ⊗m−1 �mI(bm) ⊗0 v .
(8)

Here, we implicitly assume that the disjunction strategies ⊕1, . . . ,⊕l and the conjunc-
tion strategies ⊗1, . . . ,⊗m−1,⊗0 are evaluated from left to right. Notice also that the
above definition implicitly assumes an implication strategy � that is defined by a �
b = sup {c∈ [0, 1] |a⊗0 c � b} for all a, b∈ [0, 1] (and thus for n, m∈ [0, 1] and a =n,
it holds that a � b �m iff b �n⊗0 m, if we assume that the conjunction strategy ⊗0 is
continuous). Observe that such a relationship between the implication strategy � and the
conjunction strategy⊗ (including also the continuity of⊗) holds in Łukasiewicz, Gödel,
and Product Logic (see Table 1). We say that I is a model of a fuzzy program P , denoted
I |=P , iff I |= r for all r∈ ground(P ). We say I is a model of a fuzzy description logic
knowledge base L, denoted I |= L, iff L∪{a = I(a) | a∈HBΦ} is satisfiable. An in-
terpretation I ⊆HBΦ is a model of a fuzzy dl-program KB = (L, P ), denoted I |= KB ,
iff I |= L and I |=P . We say KB is satisfiable iff it has a model.

The Gelfond-Lifschitz transform of a fuzzy dl-program KB =(L, P ) relative to an
interpretation I ⊆HBΦ, denoted KBI , is defined as the fuzzy dl-program (L, P I),
where P I is the set of all fuzzy rules obtained from ground(P ) by replacing all default-
negated atoms not�j bj by the truth value �jI(bj). We are now ready to define the
answer set semantics of fuzzy dl-programs as follows.

Definition 3.1. Let KB =(L, P ) be a fuzzy dl-program. An interpretation I ⊆HBΦ

is an answer set of KB iff I is a minimal model of KBI . We say that KB is consistent
(resp., inconsistent) iff KB has an (resp., no) answer set.

We finally define the notions of cautious (resp., brave) reasoning from fuzzy
dl-programs under the answer set semantics as follows.

Definition 3.2. Let KB =(L, P ) be a fuzzy dl-program. Let a∈HBΦ and n∈ [0, 1].
Then, a � n is a cautious (resp., brave) consequence of a fuzzy dl-program KB under
the answer set semantics iff I(a)�n for every (resp., some) answer set I of KB .

Example 3.2 (Shopping Agent cont’d). Consider again the fuzzy dl-program KB =
(L, P ) of Example 3.1. The following holds for the answer set M of KB :

M(query(MazdaMX5Miata)) = 0.36 ; M(query(MitsubishiEclipseSpyder)) = 0.32 .
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4 Semantic Properties

In this section, we summarize some semantic properties (especially those relevant for
the Semantic Web) of fuzzy dl-programs under the above answer set semantics.

Minimal Models. The following theorem shows that, like for ordinary disjunctive pro-
grams, every answer set of a fuzzy dl-program KB is also a minimal model of KB , and
the answer sets of a positive fuzzy dl-program KB are the minimal models of KB .

Theorem 4.1. Let KB =(L, P ) be a fuzzy dl-program. Then, (a) every answer set of
KB is a minimal model of KB , and (b) if KB is positive, then the set of all answer sets
of KB is given by the set of all minimal models of KB .

Faithfulness. An important property of integrations of rules and ontologies is that they
are a faithful [18,19] extension of both rules and ontologies.

The following theorem shows that the answer set semantics of fuzzy dl-programs
faithfully extends its counterpart for fuzzy programs. That is, the answer set semantics of
a fuzzy dl-program KB =(L, P ) with empty fuzzy description logic knowledge base L
coincides with the answer set semantics of its fuzzy program P .

Theorem 4.2. Let KB =(L, P ) be a fuzzy dl-program such that L =∅. Then, the set of
all answer sets of KB coincides with the set of all answer sets of the fuzzy program P .

The next theorem shows that the answer set semantics of fuzzy dl-programs also faith-
fully extends the first-order semantics of fuzzy description logic knowledge bases. That
is, for a∈HBΦ and n∈ [0, 1], it holds that a �n is true in all answer sets of a pos-
itive fuzzy dl-program KB = (L, P ) iff a �n is true in all fuzzy first-order models
of L∪ ground(P ). The theorem holds also when a is a ground formula constructed
from HBΦ using ∧ and ∨, along with conjunction and disjunction strategies ⊗ resp. ⊕.

Theorem 4.3. Let KB =(L, P ) be a positive fuzzy dl-program, and let a∈HBΦ and
n∈ [0, 1]. Then, a �n is true in all answer sets of KB iff a �n is true in all fuzzy first-
order models of L∪ ground(P ).

As an immediate corollary, we obtain that a �n is true in all answer sets of a fuzzy
dl-program KB = (L, ∅) iff a �n is true in all fuzzy first-order models of L.

Corollary 4.1. Let KB =(L, P ) be a fuzzy dl-program with P = ∅, and let a∈HBΦ

and n∈ [0, 1]. Then, a �n is true in all answer sets of KB iff a �n is true in all fuzzy
first-order models of L.

Unique Name Assumption. Another aspect that may not be very desirable in the Seman-
tic Web [10] is the unique name assumption (which says that any two distinct constant
symbols in Φc represent two distinct domain objects). It turns out that we actually do
not have to make this assumption, since the fuzzy description logic knowledge base of
a fuzzy dl-program may very well contain or imply equalities between individuals.

This result is included in the following theorem, which shows an alternative charac-
terization of the satisfaction of L in I ⊆HBΦ: Rather than being enlarged by a set of
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axioms of exponential size, L is enlarged by a set of axioms of polynomial size. This
characterization essentially shows that the satisfaction of L in I corresponds to check-
ing that (i) I restricted to DLΦ satisfies L, and (ii) I restricted to HBΦ −DLΦ does
not violate any equality axioms that follow from L. In the theorem, an equivalence re-
lation ∼ on Φc is admissible with an interpretation I ⊆HBΦ iff I(p(c1, . . . , cn)) =
I(p(c′1, . . . , c

′
n)) for all n-ary predicate symbols p, where n > 0, and constant sym-

bols c1, . . . , cn, c′1, . . . , c
′
n ∈Φc such that ci ∼ c′i for all i∈{1, . . . , n}.

Theorem 4.4. Let L be a fuzzy description logic knowledge base, and let I ⊆HBΦ.
Then, L ∪ {a = I(a) | a∈HBΦ} is satisfiable iff L ∪ {a = I(a) | a∈DLΦ} ∪ {c �= c′ |
c �∼ c′} is satisfiable for some equivalence relation ∼ on Φc admissible with I .

5 Summary and Outlook

We have presented an approach to tightly integrated fuzzy dl-programs under the answer
set semantics, which generalizes the tightly integrated disjunctive dl-programs in [16]
by fuzzy vagueness in both the description logic and the logic program component. We
have shown that the new formalism faithfully extends both fuzzy disjunctive programs
and fuzzy description logics, and that under suitable assumptions, reasoning in the new
formalism is decidable. Furthermore, in [17], we have presented a polynomial reduc-
tion for certain fuzzy dl-programs to tightly integrated disjunctive dl-programs. Finally,
in [17], we have also provided a special case of fuzzy dl-programs for which deciding
consistency and query processing have both a polynomial data complexity.

An interesting topic for future research is to analyze the computational complexity
of the main reasoning problems in fuzzy dl-programs, and to implement the approach.
Another interesting issue is to extend fuzzy dl-programs by classical negation.
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Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 167–181. Springer,
Heidelberg (2005)

26. Straccia, U.: A fuzzy description logic for the Semantic Web. In: Sanchez, E. (ed.) Fuzzy
Logic and the Semantic Web, Capturing Intelligence, pp. 73–90. Elsevier, Amsterdam (2006)

27. Straccia, U.: Uncertainty and description logic programs over lattices. In: E. Sanchez. (ed.)
Fuzzy Logic and the Semantic Web, Capturing Intelligence, chapter 7, pp. 115–133 (2006)

28. Straccia, U.: Fuzzy description logic programs. In: Proc. IPMU-2006, pp. 1818–1825 (2006)
29. W3C. OWL web ontology language overview, W3C Recommendation. Available at

www.w3.org/TR/2004/REC-owl-features-20040210 (February 10 (2004))

www.w3.org/TR/2004/REC-owl-features-20040210


AceRules: Executing Rules in

Controlled Natural Language

Tobias Kuhn

Department of Informatics, University of Zurich, Switzerland
tkuhn@ifi.uzh.ch

http://www.ifi.uzh.ch/cl/tkuhn

Abstract. Expressing rules in controlled natural language can bring
us closer to the vision of the Semantic Web since rules can be written
in the notation of the application domain and are understandable by
anybody. AceRules is a prototype of a rule system with a multi-seman-
tics architecture. It demonstrates the formal representation of rules using
the controlled natural language ACE. We show that a rule language can
be executable and easily understandable at the same time. AceRules is
available via a web service and two web interfaces.

1 Introduction

The idea of the Semantic Web [4] is to transform and extend the current World
Wide Web into a system that can also be understood by machines, at least to
some degree. Ideally, the Semantic Web should become as pervasive as the tradi-
tional World Wide Web today. This means that a large part of the society should
be able to participate and contribute, and thus we have to deal with the problem
that most people feel uncomfortable with technical notations. Controlled nat-
ural languages seem to be a promising approach to overcome this problem by
giving intuitive and natural representations for ontologies and rules. We present
AceRules as a prototype of a front-end rule system to be used in the context of
the Semantic Web or other environments.

The goal of AceRules is to show that controlled natural languages can be
used to represent and execute formal rule systems. Attempto Controlled English
(ACE) [9,8] is used as input and output language. ACE looks like English but
avoids the ambiguities of natural language by restricting the syntax [15] and by
defining a small set of interpretation rules [1]. The ACE parser1 translates ACE
texts automatically into Discourse Representation Structures (DRS) [7] which
are a syntactical variant of first-order logic. Thus, every ACE text has a single
and well-defined formal meaning. Among other features, ACE supports singular
and plural noun phrases, active and passive voice, relative phrases, anaphoric
references, existential and universal quantifiers, negation, and modality. ACE
has successfully been used for different tasks, e.g. as a natural language OWL
front-end [17] and as an ontology language for the biomedical domain [19].
1 http://attempto.ifi.uzh.ch/ape
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In the following section, we will introduce the AceRules system and we will
point out some of the problems involved (Sect. 2). Next, we will explain the in-
terfaces available for AceRules (Sect. 3), and finally we will draw the conclusions
(Sect. 4).

2 The AceRules System

AceRules is a multi-semantics rule system prototype using the controlled natural
language ACE as input and output language. AceRules is designed for forward-
chaining interpreters that calculate the complete answer set. The general ap-
proach of AceRules, however, could easily be adopted for backward-chaining
interpreters. AceRules is publicly available as a web service and through two
different web interfaces (see Sect. 3).

In order to clarify the functionality of AceRules, let us have a look at the
following simple program. We use the term program for a set of rules and facts.

If a customer has a card and does not have a code then CompanyX sends a letter

to the customer.

Every customer has a card.

John is a customer.

John does not have a code.

Submitting this program to AceRules, we get the answer shown below.2 We use
the term answer for the set of facts that can be derived from a program.

John is a customer.

CompanyX sends John a letter.

John has a card.

It is false that John has a code.

As we can see, the program and the answer are both in English. No other formal
notations are needed for the user interaction. Even though inexperienced users
might not be able to understand how the answer is inferred, they are certainly
able to understand input and output and to verify that the output is some kind
of conclusion of the input. This is the essential advantage of ACE over other
formal knowledge representation languages.

Existing work to use natural language representations for rule systems is
based on the idea of verbalizing rules that already exist in a formal represen-
tation [13,16,20]. In our approach, the controlled natural language is the main
language that can be translated into a formal representation (parsing) and back-
wards (verbalizing). It is not necessary that the rules are first formalized in
another language.

The rest of this section explains some of the important properties of AceRules,
namely its multi-semantics architecture (Sect. 2.1), the representation of nega-
tion (Sect. 2.2), and the construction of valid programs (Sect. 2.3).
2 The courteous interpreter is used here. See Sect. 2.1 for details.
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2.1 Multi-semantics Architecture

AceRules is designed to support various semantics. The decision of which se-
mantics to choose should depend on the application domain, the characteristics
of the available information, and on the reasoning tasks to be performed. At
the moment, AceRules incorporates three different semantics: courteous logic
programs [12], stable models [10], and stable models with strong negation [11].

The original stable model semantics supports only negation as failure, but it
has been extended to support also strong negation. Courteous logic programs are
based on stable models with strong negation and support therefore both forms
of negation. Section 2.2 will take a closer look at this issue.

None of the two forms of stable models guarantee a unique answer set. Thus,
some programs can have more than one answer. In contrast, courteous logic
programs generate always exactly one answer. In order to achieve this, priorities
are introduced and the programs have to be acyclic.

On the basis of these properties, one should decide which semantics to choose.
Since we do not want to restrict AceRules to a certain application or domain,
we decided to make the semantics exchangeable.

The three semantics are implemented in AceRules as two interpreter mod-
ules. The first interpreter module handles courteous logic programs and is im-
plemented natively.3 For the stable model semantics with and without strong
negation there is a second interpreter module that wraps the external tools
Smodels [21] and Lparse [25].

There are various other semantics that could be supported, e.g. defeasible
logic programs [22] or disjunctive stable models [23]. Only little integration effort
would be necessary to incorporate these semantics into AceRules.

2.2 Two Kinds of Negation

In many applications, it is important to have two kinds of negation [27]. Strong
negation (also called classical negation or true negation) indicates that some-
thing can be proven to be false. Negation as failure (also called weak negation
or default negation), in contrast, states only that the truth of something cannot
be proven.

However, there is no such general distinction in natural language. It depends
on the context, what kind of negation is meant. This can be seen with the
following two examples in natural English:

If there is no train approaching then the school bus can cross the railway tracks.

If there is no public transport connection to a customer then John takes the

company car.

In the first example (which is taken from [11]), the negation corresponds to
strong negation. The school bus is allowed to cross the railway tracks only if the
available information (e.g. the sight of the bus driver) leads to the conclusion that

3 The implementation of the courteous interpreter is based on [6].



302 T. Kuhn

no train is approaching. If there is no evidence whether a train is approaching
or not (e.g. because of dense fog) then the bus driver is not allowed to cross the
railway tracks.

The negation in the second sentence is most probably to be interpreted as
negation as failure. If one cannot conclude that there is a public transport con-
nection to the customer on the basis of the available information (e.g. public
transport schedules) then John takes the company car, even if there is a special
connection that is just not listed.

As long as only one kind of negation is available, there is no problem to
express this in controlled natural language. As soon as two kinds of negation are
supported, however, we need to distinguish them somehow. We found a clean
and natural way to represent the two kinds of negation in ACE. Strong negation
is represented with the common negation constructs of natural English:

– does not, is not (e.g. John is not a customer)
– no (e.g. no customer is a clerk)
– nothing, nobody (e.g. nobody knows John)
– it is false that (e.g. it is false that John waits)

To express negation as failure, we use the following constructs:

– does not provably, is not provably (e.g. a customer is not provably trustworthy)
– it is not provable that (e.g. it is not provable that John has a card)

This allows us to use both kinds of negation side by side in a natural looking
way. The following example shows a rule using strong negation and negation as
failure at the same time.

If a customer does not have a credit-card and is not provably a criminal then the

customer gets a discount.

This representation is compact and we believe that it is well understandable.
Even for persons that have never heard of strong negation and negation as
failure, this rule makes some sense, even though they are probably not able to
grasp all its semantic properties. Of course, if users want to create or modify
rules containing negation then they have to learn first how the two kinds of
negation have to be represented in ACE.

2.3 Intelligent Grouping

ACE is an expressive language, in fact more expressive than most rule languages.
Thus, some sentences have to be rejected by AceRules because they cannot be
mapped to an acceptable rule of the respective rule theory. However, in some
situations the formal structure is not directly compliant with the rule theory,
but can be translated in a meaningful way into a valid rule representation. This
translation we call intelligent grouping.

To make this point clear, we present some simple examples using stable model
semantics with strong negation. The described procedure can be used in the same
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way for the other semantics. Rules of the stable model semantics with strong
negation have the form

L0 ← L1 ∧ . . . ∧ Lm ∧ ∼Lm+1 ∧ . . . ∧∼Ln

with 0 ≤ m ≤ n and each Li being a literal. A literal is an atomic proposition
(Ai) or its strong negation (¬Ai). Negations are allowed to be applied only to
atomic propositions or — in the case of negation as failure (∼) — to literals.
Furthermore the heads of rules must contain nothing but a single literal. These
restrictions we have to keep in mind when we translate an ACE text into a
rule representation. As a first example, let us consider the following AceRules
program:

John owns a car.

Bill does not own a car.

If someone does not own a car then he/she owns a house.

The ACE parser transforms this text into its logical representation4

owns(john, X)
car(X)
¬(owns(bill, Y ) ∧ car(Y ))
¬(owns(A, B) ∧ car(B)) → (owns(A, C) ∧ house(C))

which is not yet compliant with the rule theory. It contains complex terms inside
of a negation and in the head of a rule. But considering the initial text, we
would expect this example to be acceptable. In fact, it was just formalized in an
inappropriate way. This is the point where the intelligent grouping is applied. If
we aggregate some of the predicates then we end up with a simpler representation
that has a correct rule structure:

owns car(john)
¬owns car(bill)
¬owns car(X) → owns house(X)

This transformation is based on a set of grouping patterns that are collected in
a first step, and then these patterns are used to perform the actual grouping.
For our example, the following two patterns have been used:

owns(X1, I1), car(I1) ⇒ owns car(X1)
owns(X2, I2), house(I2) ⇒ owns house(X2)

In such patterns, there can be two kinds of placeholders: Each Xi stands for any
variable or atom, and each Ii stands for a variable that does not occur outside of
the group. This allows us to omit the variables Ii after the transformation. From
a more intuitive point of view, we can say that the phrases “owns a car” and “owns

4 Throughout this article we will use a simplified form of the logical representation.
For a more precise description, consult [7].
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a house” are considered as atomic propositions. This means that the car and the
house do not have an independent existence, and thus references to these objects
are not allowed. If this restriction is violated then a consistent transformation
into a valid rule structure is not possible. For example, the program

Bill does not own a car.

John owns a car X.

Mary sees the car X.

that leads to the logical representation

¬(owns(bill, A) ∧ car(A))
owns(john, B)
car(B)
sees(mary, B)

cannot be translated into a valid rule structure. An error message has to be raised
in such cases informing the user that the program has an invalid structure. It
has still to be evaluated how hard it is for normal users to follow this restriction
and how often such situations actually occur. We are considering to develop
authoring tools [3] that automatically enforce these restrictions.

Concerning the grouping step, one might think that the text was just trans-
lated into a too complex representation in the first place and that the parser
should directly create a grouped representation. The following program shows
that this is not the case:

John owns a car.

The car contains a suitcase.

If someone X owns something that contains something Y then X owns Y.

It is transformed by the ACE parser into:

owns(john, H)
car(H)
contains(H, S)
suitcase(S)
owns(Z, X) ∧ contains(X, Y ) → owns(Z, Y )

In this case, we need the more fine-grained representation and no grouping has
to be done since the program is already in a compliant form. This and the first
example start both with the sentence “John owns a car”, but in the end it has
to be represented differently. Thus, the grouping is intelligent in the sense that
it must consider the whole program to find out which predicates have to be
grouped.

Another important property of the grouping step is that the transformation
has to be reversible. Before verbalizing an answer set, we need to ungroup the
predicates that were grouped before.

Altogether, the intelligent grouping gives us much flexibility. A sentence like
“John owns a car” is treated as an atomic property of an object (John) or as a
relation between two objects (John and a car), whichever makes sense in the
respective context.
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3 Interfaces

There are different existing interfaces that use controlled natural languages, e.g.
query interfaces like Querix [18] or LingoLogic [26]. Other interfaces can also
be used as editors like ECOLE [24], GINO [5], or AceWiki5, but none of them
concerns rule systems. There are applications like NORMA [14] which can ver-
balize formal rules, but no tool exists that uses a controlled natural language as
a full-blown rule language.

AceRules comes with three interfaces. A webservice [2] facilitates the integra-
tion of the AceRules functionality into any other program. Furthermore, there
are two web interfaces for human interaction. One is a technical interface6 that
is intended for advanced users that are interested in the technical background
of the system. The main web interface7 aims at end-users who are not familiar
with formal notations. For the rest of this section, we will take a closer look at
this main interface of which Fig. 1 shows a screenshot.

We claim that a Semantic Web interface for end-users (in the sense of an editor
interface) should fulfill the following three properties which partly overlap.

1. Technical notations should be hidden. The users should not see any technical
language (e.g. any XML-based language), but instead there should be a well-
understandable and intuitive representation. Novice users should be able to
understand the semantic representations after a very short learning phase.

2. The interface should guide the users during modification and creation of the
formal representations. The users should not need to read any manuals or
other documentation before they can start using the system, but they should
be able to learn how to interact with the system while using it.

3. The users should be supported by a context-sensitive and comprehensive help
feature. Especially in the case of errors, the users should be led immediately
to a corresponding help article. These articles should be concise suggestions
how to solve the problem.

Altogether, these three properties ensure that the Semantic Web interface has
a shallow learning curve which we consider to be crucial for the success of the
Semantic Web.

AceRules uses ACE as input and output language. No other notations are
needed. Thus, AceRules fully satisfies the first condition. Furthermore, AceRules
has a help feature which is shown in a browser-internal window. There is a help
article for every error that can occur. If an error has occurred, then the user is
directed to the respective article. Thus, AceRules fulfills the third condition as
well.

AceRules gives also some help for the modification of existing programs and
for the creation of new sentences. Nevertheless, we have to admit that it can only
partially fulfill the second condition. For a real guidance of the user, a predictive

5 http://attempto.ifi.uzh.ch/acewiki
6 http://attempto.ifi.uzh.ch/acerules_ti
7 http://attempto.ifi.uzh.ch/acerules
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Fig. 1. The figure shows a screenshot of the AceRules web interface. The upper text
box is the input component and contains the program to be executed. The result of
the program is then displayed in the text box below.

authoring tool [3] would be needed, as provided by ECOLE and AceWiki. Such
an authoring tool guides the user step by step through the creation of a sentence
and makes it impossible to create syntactically incorrect representations.

4 Conclusions

We demonstrated that it is possible to use controlled natural languages for the
formal representation of rule systems. Negation as failure and strong negation
can be used side by side in a natural way. We introduced intelligent grouping
as a method of transforming formal structures into valid rule representations.
The AceRules web interface proves that a controlled natural language like ACE
is well suited for the communication with the user and that no other formal
language is needed.

AceRules is still a prototype and not yet ready for the use in real world
applications. For example, the underlying theories do not support procedural
attachments or arithmetics that would probably be needed in a real world envi-
ronment. We believe that ACE and AceRules can be extended to support such
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constructs in a natural way. On the interface level, a predictive authoring tool
would be very helpful. We referred to existing tools that demonstrate how this
could be done.
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Abstract. This paper proposes a solution for bridging abstract and concrete 
syntax of a Web rule language by using model transformations. Current specifi-
cations of Web rule languages such as Semantic Web Rule Language (SWRL) 
define its abstract syntax (e.g., EBNF notation) and concrete syntax (e.g., XML 
schema) separately. Although the recent research in the area of Model-Driven 
Engineering demonstrates that such a separation of two types of syntax is a 
good practice (due to the complexity of languages), one should also have tools 
that check validity of rules written in a concrete syntax with respect to the ab-
stract syntax of the rule language. In this study, we use analyze the REWERSE 
I1 Rule Markup Language (R2ML) whose abstract syntax is defined by using 
metamodeling, while its textual concrete syntax is defined by using XML 
schema. We bridge this gap by a bi-directional transformation defined in a 
model transformation language (i.e., ATL). 

1   Introduction 

Using and sharing rules on the Web are some of the main challenges that the Web 
community tries to solve. The first important stream of research in this area is related 
to the Semantic Web technologies where researchers try to provide formally-defined 
rule languages (e.g., Semantic Web Rule Language, SWRL [7]) that are used for 
reasoning over Semantic Web ontologies. The main issue to be solved is the type 
(e.g., open of closed world) of reasoning that will be used, so that formal-semantics of 
such languages can be defined. However, as in constructing any other language,  
defining abstract syntax (independent of machine encoding) and concrete syntax  
(machine-dependent representation) is an unavoidable part of the language definition. 
An important characteristic of Semantic Web rule languages is that they are primarily 
not dealing with interchange of rules between various types of rules on the Web. This 
means that Semantic Web rule languages do not tend to compromise their reasoning 
characteristics for the broader syntactic expressivity. This is actually the main focus 
on the second stream of research on the Web that is chiefly articulated through the 
W3C effort called Rule Interchange Format (RIF) [6], while the most known effort in 
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that area is the RuleML language [4]. The primary result expected from this research 
stream is to define an XML-based concrete syntax for sharing rules on the Web. Al-
though the XML syntax for such a language is certainly the pragmatic expectation of 
the Web users, for a good definition of such a language is also important to have a 
well-designed abstract syntax. 

In this paper, we try to address the problem of bridging the gap between an abstract 
and concrete syntax of a Web rule interchange language, i.e., the REWERSE I1 Rule 
Markup Language (R2ML) [18], one of the most-known RIF proposals. Since this 
language leverages the benefits of a new software engineering discipline Model-
Driven Engineering (MDE) [3], the abstract syntax R2ML is defined by a metamodel. 
Furthermore, the R2ML XML schema, i.e., R2ML concrete syntax, has been devel-
oped for encoding rules by domain experts. However, there is no solution that enables 
transforming XML documents compliant to the R2ML XML documents into repre-
sentation compliant to the R2ML metamodel (simply R2ML models). This gap  
between the R2ML metamodel and the R2ML XML schema causes the following 
problems: 

1. Rules represented in the R2ML XML format cannot be stored in MOF-based 
model repositories, thus cannot be validated w.r.t. the R2ML metamodel. 

2. The R2ML metamodel can not be instantiated based on rules encoded in the R2ML 
XML schema, and thus the R2ML metamodel can not be validated with real-world 
rules.  

2   Model Driven Engineering 

Model Driven Engineering is a new software engineering discipline in which the 
process heavily relies on the use of models [3]. A model defined is a set of statements 
about some system under study [16]. Models are usually specified by using modeling 
languages (e.g., UML), while modeling languages can be defined by metamodels. A 
metamodel is a model of a modeling language. That is, a metamodel makes state-
ments about what can be expressed in the valid models of a certain modeling  
language [16]. The OMG’s Model Driven Architecture (MDA) is one possible archi-
tecture for MDE [11]. One important characterestic of MDA is its organization. In 
fact, it consists of three layers, namely: M1 layer or model layer where models are 
defined by using modeling languages; M2 layer or metamodel layer where models of 
modeling languages (i.e. metamodels) are defined (e.g., UML) by using metamodel 
languages; and M3 layer or metametamodel layer where only one metamodeling lan-
guage is defined (i.e. MOF) by itself [12].  

The relations between different MDA layers can be considered as instance-of or 
conformant-to, which means that a model is an instance of a metamodel, and a meta-
model is an instance of a metametamodel. The rationale for having only one language 
on the M3 layer is to have a unique grammar space for defining various modeling 
languages on the M2 layer. Thus, various modeling language can be processesed in 
the same way by using the same API. An example of such an API's are Java Metadata 
Interface (JMI)1 that enables the implementation of a dynamic, platform-independent 
                                                           
1 http://java.sun.com/products/jmi/ 
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infrastructure to manage the creation, storage, access, discovery, and exchange of 
metadata. The most comprehensive implementation of JMI is NetBeans Metadata 
Repository (MDR). 

Although MDE principles of defining modeling languages seems quite promising, 
the reality is that languages related can be defined and represented by using various 
technologies such as XML, databases, and MOF. In fact, the MDE theory introduces a 
concept of technical spaces, where a technical space is a working context with a set of 
associated concepts, body of knowledge, tools, required skills, and possibilities [9]. 
Although some technical spaces are difficult to define, they can be easily recognized 
(e.g. XML, MDA). In the case of the problem analyzed in this paper, we have to 
bridge between two technical spaces, since the R2ML metamodel and R2ML XML 
schema are defined in the MOF and XML technical spaces, respectively. 

We should also mention the model transformations that represent the central opera-
tion for handling models in the MDA. Model transformations are the process of  
producing one model from another model of the same system [11]. In our research, 
we have decided to use ATLAS Transformation Language (ATL) [1] as the model 
transformations tool, which is based on OMG's QVT specification [13]. 

3   R2ML Metamodel and R2ML XML Schema 

This section is devoted to the description of the R2ML language [15] [18] by explain-
ing the R2ML abstract syntax and R2ML XML-based concrete syntax. Due to the size 
of the R2ML language, we only give an excerpt of the language related to integrity 
rules in this section. For the complete definition of the R2ML metamodel and R2ML 
XML schema, we advise readers to see [15]. 

3.1   The R2ML Abstract Syntax: R2ML Metamodel 

The R2ML metamodel is defined by using the MOF metamodeling language. In Fig. 1, 
we give a UML class diagram depicting the MOF definition of integrity rules. An 
integrity rule, also known as (integrity) constraint, consists of a constraint assertion, 

which is a sentence (or formula without 
free variables) in a logical language 
such as first-order predicate logic. 
R2ML supports two kinds of integrity 
rules: the alethic and deontic ones. An 
alethic integrity rule can be expressed 
by a phrase, such as “it is necessarily 
the case that” and a deontic one can be 
expressed by phrases, such as “it is 
obligatory that” or “it should be the 
case that.”  

Example 1 (Integrity rule). If rental is not a one way rental then return branch of 
rental must be the same as pick-up branch of rental. 

R2ML defines the general concept of LogicalFormula (see Fig. 2) that can be Con-
junction, Disjunction, NegationAsFailure, StrongNegation, and Implication. The 

 

Fig. 1. The metamodel of integrity rules 



312 M. Milanović et al. 

concept of a QuantifiedFormula is essential for R2ML integrity rules, and it subsumes 
existentially quantified formulas and universally quantified formulas. Fig. 2 also con-
tains elements such as AtLeastQuantifiedFormula, AtMostQuantifiedFormula, and 
AtLeastAndAtMostQuantifiedFormula that allow defining cardinality constrains in the 
R2ML rules. 

 

Fig. 2. The MOF model of LogicalFormula 

3.2   R2ML XML Schema 

The concrete syntax of the R2ML language is defined in a form of an XML schema. 
This XML schema is defined based on the R2ML MOF-based metamodel by using 
the following mapping rules presented in Table 1, while the full definition of the 
R2ML XML schema can be found [15]. In Fig. 3, we give the integrity rules defined 

in Example 1 in a form of an XML 
document compliant to the R2ML 
XML schema.  

One may raise a natural question: 
What do we need an XML schema for 
R2ML and the above design rules 
when there is XMI and rules how to 
produce an XMI schema from MOF-
based models, metamodels, and 
metametamodels [14]. We decided to 
build this XML schema, as XMI is too 
complex for our needs and the XMI 
schema model goes into an extremely 
verbose XML syntax, hard to be used 
by humans, which is not in our design 
goals. However, the benefit of the use 
of XMI is that they can be processed 
by model repositories, thus we can test 
out the validity of XMI documents 
w.r.t. MOF-based metamodels.  

<r2ml:AlethicIntegrityRule r2ml:id="IR001"> 
   <r2ml:constraint> 
       <r2ml:UniversallyQuantifiedFormula> 
          <r2ml:ObjectVariable r2ml:name="r1" r2ml:classID="Rental"/> 
          <r2ml:Implication>  
               <r2ml:antecedent> 
  <r2ml:NegationAsFailure> 
       <r2ml:ObjectClassificationAtom r2ml:classID="OneWayRental"> 
           <r2ml:ObjectVariable r2ml:name="r1"/> 
       </r2ml:ObjectClassificationAtom> 
  </r2ml:NegationAsFailure> 
              </r2ml:antecedent>     
              <r2ml:consequent> 
 <r2ml:EqualityAtom> 
      <r2ml:ReferencePropertyFunctionTerm  
                         r2ml:referencePropertyID="returnBranch"> 
                           <r2ml:contextArgument> 
              <r2ml:ObjectVariable r2ml:name="r1"/> 
          </r2ml:contextArgument> 
      </r2ml:ReferencePropertyFunctionTerm> 
      <r2ml:ReferencePropertyFunctionTerm  
                         r2ml:referencePropertyID="pickupBranch"> 
          <r2ml:contextArgument> 
               <r2ml:ObjectVariable r2ml:name="r1"/> 
          </r2ml:contextArgument> 
      </r2ml:ReferencePropertyFunctionTerm> 
 </r2ml:EqualityAtom> 
                </r2ml:consequent> 
           </r2ml:Implication> 
       </r2ml:UniversallyQuantifiedFormula> 
   </r2ml:constraint> 
</r2ml:AlethicIntegrityRule>  

Fig. 3. R2ML XML representation of the integ-
rity rule from Example 1 
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4   Transformations Between the R2ML XML Schema and the 
R2ML Metamodel 

In this section, we explain the transformation steps undertaken to transform R2ML 
XML documents into the models compliant to the R2ML metamodel. The R2ML 
concrete syntax is located in the XML technical space. However, the R2ML meta-
model is defined by MOF, so the metamodel is located in the MOF technical space. 
To develop transformations between these two rule representations, we should put 
them into the same technical space. One alternative is to develop transformations in 
the XML technical space by using XSLT. This means that documents in the R2ML 
XML formant have to be transformed into the documents represented in the XMI 
format, compliant to the R2ML metamodel. However, the present practice has dem-
onstrated that the use of XSLT as a solution is hard to maintain [8], since small modi-
fications of the input and output XML formats can completely invalidate the XSLT 
transformation. This is especially amplified when transforming highly verbose XML 
formats such as XMI. On the other hand, we can perform this transformation in the 
MOF technical space by using model transformation languages such as ATL that are 
easier to maintain and have better tools for managing MOF-based models. We base 
our solution on the second alternative, i.e., in the MOF technical space by using ATL. 
The overall organization of the transformation process is shown in Fig. 4. It is obvi-
ous that transformation between the R2ML XML schema and the R2ML metamodel 
consists of two transformations, namely: 1. From the R2ML metamodel to the R2ML 
XML schema (i.e., from the XML technical space to the MOF technical space); and 2. 
From the R2ML XML schema to the R2ML metamodel. 

 

Fig. 4. The transformation scenario: R2ML XML into the R2ML metamodel and vice versa 

4.1   Transforming the R2ML XML Schema into the R2ML Metamodel 

The transformation process consists of two primary steps as follows. 

Step 1. XML injection from the XML technical space to the MOF technical space. 
This means that we have to represent R2ML XML documents (RuleBase.xml from Fig. 
4) into the form compliant to MOF. We use the XML injector that transforms R2ML 
XML documents (written w.r.t. the R2ML XML Schema, i.e., R2ML.xsd from Fig. 4) 
into the models conforming to the MOF-based XML metamodel (step 1 in Fig. 4). This 
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has an extremely low cost, since the XML injector is distributed as a general-purpose 
tool together with ATL, which performs the XML injection automatically. An XML 
model (RuleBase_XML in Fig. 4), created by the XML injector, is located on the M1 
layer of the MDA. This means that the XML injector instantiates the MOF-based 
XML metamodel (i.e., abstract syntax of XML). We can manipulate with these mod-
els like with any other type of MOF-based metamodels. Thus, such XML models can 
be represented in the XMI format (step 2 in Fig. 4). This XMI format can be regarded 
as an implicitly defined XML schema (XML_XMI.xsd) compliant to the XML meta-
model.  

Step 2. A transformation of XML models into R2ML models. We transform an XML 
model (RuleBase_XML) created in Step 1 into an R2ML model (RuleBase_R2ML) by 
using an ATL transformation named XML2R2ML.atl (step 3 in Fig. 4). The output R2ML 
model (RuleBase_R2ML) conforms to the R2ML metamodel. In the XML2R2ML.atl 
transformation, source elements from the XML metamodel are transformed into target 
elements of the R2ML metamodel. The XML2R2ML.atl transformation is done on the 
M1 level (i.e., the model level) of the MDA. This transformation uses the information 
about elements from the M2 (metamodel) level, i.e., metamodels defined on the M2 level 
(i.e., the XML and R2ML metamodels) in order to provide transformations of models on 
the level M1. It is important to point out that M1 models (both source and target ones) 
must be conformant to the M2 metamodels. This principle is well-know as metamodel-
driven model transformations [2]. In Table 1, we give an excerpt of mappings between the 
R2ML XML Schema, XML metamodel, and R2ML metamodel. For XML Schema  
complex types, an instance of the XML metamodel element is created through the XML 
injection described in Step 1 above. Such an XML element is then transformed into an 
instance of the R2ML metamodel element by using the XML2R2ML.atl transformation 
(Step 2).  

Table 1. An excerpt of mappings between the R2ML XML schema and the R2ML metamodel 

R2ML schema XML metamodel  R2ML metamodel Description 
IntegrityRule-
Set 

Element 
name = 
'r2ml:IntegrityRuleSet' 

IntegrityRuleSet Captures a set of 
integrity rules. 

AlethicInteg-
rityRule 

Element 
name = 
'r2ml:AlethicIntegrityRule' 

AlethicIntegri-
tyRule 

Represents an 
alethic integrity 
rule. 

ObjectVariable Element  
name = 
'r2ml:ObjectVariable' 

basCont-
Voc.ObjectVariabl
e 

Represents an 
object variable. 

Mappings between elements of the XML metamodel and elements of the R2ML 
metamodel are defined as a sequence of rules in the ATL language. These rules use 
additional helpers functions in defining mappings. Each rule in the ATL has one input 
element (i.e., an instance of a metaclass from a MOF-based metamodel) and one or 
more output elements. In fact, the ATL transformation takes an input XML model 
from a model repository and creates a new model compliant to the R2ML metamodel. 

After applying the above ATL rules to the input XML models, R2ML models 
(RuleBase_R2ML) are stored in the model repository. Such R2ML models can be 
exported in the form of R2ML XMI documents (e.g., RuleBase_R2ML.xmi in Fig. 4). 
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4.2   Transforming the R2ML Metamodel into the R2ML XML Schema 

Along with the transformation of the R2ML XML schema to the R2ML metamodel, 
we have also defined a transformation in the opposite direction, i.e., from the R2ML 
metamodel to the R2ML XML schema (R2ML2XML). This transformation process 
consists also of two primary steps as follows. 

Step 1. The transformation of R2ML models to XML models. We transform an 
R2ML model (RuleBase_R2ML from Fig. 4) into an XML model (RuleBase_XML) 
by using an ATL transformation named R2ML2XML.atl (step 5 in Fig. 4). After 
applying this transformation to the input R2ML models, XML models (Rule-
Base_XML) are stored in the model repository (RuleBase_XML.xmi in Fig. 4). The 
output XML model conforms to XML metamodel. Mappings from Table 1 apply 
here with no changes. So, for the R2ML rules given the R2ML XMI format, we get 
an XML model which can be serialized back into the XML XMI format (step 6 in 
Fig. 4). 

Step 2. The XML extraction from the MOF technical space to the XML technical 
space. In this step, we transforms XML model (RuleBase_XML in Fig. 4) which 
conforms to MOF-based XML metamodel and is generated in step 1 above, to Rule-
Base.xml document (Step 7 in Fig. 4). The XML extractor is a part of the ATL  
toolkit.  

Creating a transformation from the R2ML metamodel to the R2ML XML schema 
(R2ML2XML), appeared to be easier to implement than the XML2R2ML transforma-
tion. For the R2ML2XML transformation, we needed only one helper for checking 
the negation of Atoms. All the ATL matched transformation rules are defined 
straightforward similar to the XML2R2ML transformation, except for unique  
elements (like ObjectVariable).  

5   Experiences 

The transformation is tested on a set of real world rules collected by the REWERSE 
Working Group I1 at the Brandenburg University of Technology at Cottbus. In this 
section, we report on some lessons we learned in developing and applying the trans-
formation. These lessons also helped us to validate the R2ML MOF-based metamodel 
as well as to propose some changes of the R2ML metamodel. 

Missing associations. Our goal was to transform rules from the R2ML XML format 
into the R2ML metamodel. This helped us identify some associations missing in the 
R2ML metamodel without which we could not represent all relations existing in the 
R2ML XML format. For example, the IntegrityRuleSet and DerivationRuleSet com-
plex types are sequences of IntegrityRule and DerivationRule, respectively, in the 
R2ML XML schema. This implicated that in the R2ML metamodel we had to add an 
association between IntegrityRuleSet and IntegrityRule as well as another association 
between DerivationRuleSet and DerivationRule. 



316 M. Milanović et al. 

Abstract classes. Originally, some classes of the R2ML metamodel were defined as 
abstract classes (e.g., Disjunction, Conjunction, and Implication) [18]. When we  
attempted to transform rules form the R2ML XML format into the R2ML metamodel, 
we faced the problem that ATL engine refused executing the ATL transformation. 
The problem was that some classes should not actually be abstract, as the MDR model 
repository prevented their instantiation by strictly following the R2ML metamodel 
definition. This was an obvious indicator to change such classes not to be abstract.  

Conflicting compositions. Since the meaning of MOF compositions is fully related to 
instances of classes connected by compositions, it is very hard to validate the use of 
compositions in MOF-based metamodels without instantiating metamodels. This 
means that for a class A that composes a class B, an instance of the class B can be 
only composed by one and only one instance of the class A. It is also correct to say 
that a class C also composes the class B. However, the same instance of the class B 
can not be composed by two other instances, regardless of the fact that one of them is 
a instance of the class A and another one of the class C. Since ATL uses the MDR as 
model repository, MDR does not allow us to execute ATL transformations that break 
the MOF semantics including the part related to compositions. This actually helped us 
identify some classes (e.g., term association from the ObjectClassificationAtom class 
to the ObjectTerm class, objectArguments association from the AssociationAtom 
class to the ObjectTerm class, etc.) in the R2ML metamodel breaking this rule. To 
overcome this problem, we have changed (“relaxed”) the composition with a regular 
association relation. This makes sense, since a variable should be declared once, while 
all other elements should refer to that variable (not compose it).  

Multiple inheritance conflict. During the implementation of the injection and trans-
formation from the R2ML XML to the R2ML metamodel, we noticed the well-known 
"diamond" problem [17], i.e. a multiple inheritance conflict, in the object-oriented 
paradigm. Such a conflict arises when a class, say N, obtains the same attribute attr 
from two or more parent class; let us say classes A and B. These both parent classes A 
and B have the same parent class C from which both of them inherit the attr, thus 
there is a conflict to determine from which of them the attribute is inherited and how 
to access it at the class N. In the previous version of the R2ML metamodel, we de-
fined three types of Variables: ObjectVariable, DataVariable and Variable which is 
parent from first two Variables. The problem occurred because ObjectVariable inher-
ited ObjectTerm (which inherited Term), but it also inherited Variable, which also 
inherited Term, as shown in Fig. 5a. In this way, ObjectVariable inherited the class 
Term's attributes (i.e., isMultivalued) from two parents, namely, ObjectTerm and 
Variable. The same situation was with DataVariable and DataTerm. We solved this 
situation (Fig. 5b), as follows. First, we introduced the GenericTerm class which 
inherits the Term class, and the GenericVariable class which inherits GenericTerm. 
Next, we changed the Variable class, which is now an abstract class and it is a parent 
class for the GenericVariable and ObjectVariable classes. In this way, ObjectVariable 
only inherits Term's attributes from one parent only (ObjectTerm). Finally, we should 
note that we have a similar solution for DataVariable.  
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Fig. 5. The multiple inheritance conflict with  (a) and its solution  (b) 

6   Conclusions 

To the best of our knowledge, there is no solution to transforming rule languages 
based on model transformation languages. Most of previous solutions to transforming 
rule languages such as RuleML and SWRL are implemented by using XSLT or pro-
gramming languages (Java) [5]. By the nature, our solution is the most similar to 
those based on the use of XSLT, as a general purpose transformation language for the 
XML technical space. Examples of transformations for the R2ML which are devel-
oped by using XSLT  [15] such as  translators from R2ML to F-Logic, between the  
F-Logic XML format and R2ML, from R2ML to Jess (rule engine), R2ML to 
RuleML, etc. 

In this paper, we have demonstrated potentials of model transformations for trans-
forming rule languages. First, the use of model transformation languages forces us to 
use valid source and target models. This means that the transformation can not be 
executed properly if either of rule models is not fully conformant to its metamodel. In 
our case, the source R2ML XML rules have to be conformant to the XML meta-
model, while R2ML models have to be conformant to the R2ML metamodel. Second, 
every time we execute the model transformation, the elements of the target model are 
instantiated in the model repository. This means that the model transformation pro-
vided us with the mechanism for instantiation of the R2ML metamodel. This helped 
us detect some issues in the R2ML metamodel such as conflicting compositions and 
inappropriate abstract classes. Third, instances of rule metamodels are stored into 
MOF-based repositories. Since model repositories have generic tools for export-
ing/importing (meta)models in the XMI format, we employ them to export instances 
of the R2ML metamodel in the XMI format, and thus share R2ML models with other 
MOF-compliant applications. Finally, the use of ATL is more appropriate than XSLT 
when transforming rules between the XML and MOF technical spaces, since ATL 
supports advanced features for transforming languages based on metamodels. 

In the future work, we will use real-world rules that we have transformed into the 
R2ML metamodel to evaluation transformations between the R2ML metamodel and 
other rule languages. Currently, we are implementing a bi-directional model trans-
formation between the R2ML metamodel and the MOF-based OCL metamodel and 
between the R2ML metamodel and the SWRL language whose abstract syntax is 
defined by a metamodel. Of course, in this research we have to address even more 
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challenges, since we need to bridge between three technical spaces, namely, XML 
(SWRL concrete syntax), EBNF (OCL concrete syntax), and MOF (metamodels of 
R2ML, OCL, and SWRL) [10]. 
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Abstract. Web queries have been and will remain an essential tool for accessing,
processing, and, ultimately, reasoning with data on the Web. With the vast data
size on the Web and Semantic Web, reducing costs of data transfer and query
evaluation for Web queries is crucial. To reduce costs, it is necessary to narrow
the data candidates to query, simplify complex queries and reduce intermediate
results.

This article describes a static approach to optimization of web queries. We
introduce a set of rules which achieves the desired optimization by schema and
type based query rewriting. The approach consists in using schema information
for removing incompleteness (as expressed by ‘descendant’ constructs and dis-
junctions) from queries. The approach is presented on the query language Xcerpt,
though applicable to other query languages like XQuery. The approach is an ap-
plication of rules in many aspects—query rules are optimized using rewriting
rules based on schema or type information specified in grammar rules.

1 Introduction

Web queries have been and, by all accounts, will remain an essential tool for access-
ing, processing, and, ultimately, reason with data on the Web. They are an essential
component of many Web rule languages for expressing conditions on the information
available on the Web. Web queries occur in so diverse rule languages as XSLT, CSS,
Xcerpt, WebSQL, RVL, and dlvhex. The perceived strength and main contribution of
Web queries and their underlying semi-structured data model is the ability to model
data with little or no (a priori) information on the data’s schema. In this spirit, all semi-
structured query languages are distinguished from traditional relational query languages
in providing core constructs for expressing incomplete queries, i.e., queries where only
some of the sought-for data is specified but that are not affected by the presence of
additional data. Examples of such constructs are regular path expressions in Lorel, the
descendant and following closure axis in XPath and XQuery, descendant and ad-
jacency selectors in CSS, or Xcerpt’s desc and partial query patterns. Incompleteness
constructs often, in particular if concerned with navigation in the graph, resemble to
reachability or transitive closure constructs.

Incomplete query constructs have proved to be both essential tools for expressing
Web queries and a great convenience for query authors able to focus better on the
parts of the query he or she is most interested in. Though some evaluation approaches,
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e.g., [5] (usually limited to tree-shaped data) can handle certain incomplete queries
(viz., those involving descendant or following) efficiently, most approaches suffer
from lower performance for evaluating incomplete queries than for evaluating queries
without incompleteness. The latter is particularly true for query processors with limited
or no index support (a typical case in a Web context where query processors are often
used in scenarios where data is transient rather than persistent).

In this paper, we propose a set of equivalences for removing (or introducing) queries
with incomplete constructs. Our main contributions are as follows:

First, we discuss the types of incompleteness that occur in Web query languages and
how they can be rewritten in Section 1.1. In this and the following parts, we have chosen
our own query language Xcerpt for providing examples, mostly as it is able to express
all forms of incompleteness that we consider in this article conveniently. We do not,
however, rely on any specialized evaluation engine. The query rewriting equivalences
are purely static and can be applied separately in a pre-processing step or during log-
ical query optimization. It is worth noting that, where XQuery allows the distinction
between complete and incomplete queries as in the case of the descendant axis, our
equivalences can as well be used for rewriting XQuery expressions.

Second, in Section 2, we introduce the query language Xcerpt and its types, based on a
graph schema language and a convenient automaton model for specifying and checking
schema constraints on graph-shaped semi-structured data. The automaton model is ex-
ploited to be able to specify the equivalences introduced in the second part of the article
concisely.

Third, we introduce a collection of equivalences for removing all forms of incom-
pleteness discussed in the first part. These equivalences (Section 3) can actually be
used in both directions, i.e., they could also be used to introduce incompleteness into a
complete query. In contrast to previous work on minimization and containment under
schema constraints, these equivalences operate on graph schemata and graph queries
instead of tree schemata and queries.

Fourth, we discuss briefly how these equivalences can be exploited for query optimiza-
tion (Section 4), both in a context where incompleteness is undesirable from the point
of evaluation cost and in a context where at least certain incomplete queries can be
evaluated as fast as equivalent complete queries, e.g., [5].

1.1 Three Forms of Incompleteness

In Web queries, incompleteness occurs in three forms: breadth, depth, and order. In this
article, we focus mostly on breadth and depth though we briefly consider also order
incompleteness.

1. Incompleteness in depth allows a query to express restrictions of the form “there
is a path between the paper and the author” without specifying the path’s exact
shape. The most common construct for expressing depth incompleteness is XPath’s
descendant or Xcerpt’s desc, an unqualified, arbitrary-length path between two
nodes. Regular path expressions and Xcerpt’s qualified desc allow more specific
restrictions, e.g., “there is a path between paper and author and it contains no
institutions”.
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2. Incompleteness in breadth allows a query to express restrictions on some children of
a node without restricting others (“there is an author child of the paper but there may
be other unspecified children”). Breadth incompleteness is an essential ability of all
query languages. Indeed, in many languages breadth completeness is much harder
to express than incompleteness. Nevertheless, breadth completeness allows e.g. in-
dexed access to a node’s children (often preferable to a “search-always” model).

3. Incompleteness in order allows a query to express that the children order of a node
is irrelevant (“there is an author child of the paper and a title child of the same paper
but don’t care about their order”).

In Section 3, we discuss how the first two forms of incompleteness can be rewritten
and briefly mention how the last form could be treated as well.

2 Preliminaries–Brief Introduction to Xcerpt and R2G2 Types

The query and transformation language Xcerpt [15], is a declarative, logic based Web
query language. Its salient features are pattern based query and construction of
graph-shaped semi-structured data, possibly incomplete query patterns reflecting the
heterogeneity and the semi-structured nature of Web data, rules relating query and con-
struction, and rule chaining enabling simple inference and query modularization.

As we focus on query rewriting and optimization in this article, Xcerpt queries will
be introduced, construct terms and rules are omitted. For more details about the Xcerpt
query language refer, e.g., to [15].

An Xcerpt term (query- construct- or data term) represents a tree- or graph-like struc-
ture, it consists of a label and a sequence of child terms enclosed in braces or brackets.
Square brackets (i.e., [ ]) denote ordered term specification (as in standard XML), curly
braces (i.e., { }) denote unordered term specification (as is common in databases). Dou-
ble braces (i.e., [[ ]] and {{ }}) are used to denote that a term’s content is just partially
specified—this concept only applies to query terms. This so called incompleteness in
breadth denotes, that additional child terms may be interspersed in data matching this
incomplete query term, among the ones specified in the query.

Graph structure can be expressed using a reference mechanism, but is not further
introduced as not considered in the current rewriting rules.

Queries. are connections of zero or more query terms using the n-ary connectives and
and or. A query is always (implicitly or explicitly) associated with a resource.

Query terms are similar to (possibly) non-ground functional programming expres-
sions and logical atoms. Query terms are Xcerpt terms, Xcerpt terms prefixed by the
desc-Keyword, query variables, or �. A query term l[ desc a[] ] may match a
data term with label l and child term a[] or with any child term that contains a[]
at arbitrary depth as descendant or child term. A variable, e.g. var X, may match any
term, multiple occurrences of the same variable have to match equivalent data terms.
Variables can be restricted, e.g. var X ->q denotes, that the variable may only match
with terms matching the query term q. The term � denotes the most general query
matching any data term. It can also be seen as an anonymous variable. While not for-
mally part of Xcerpt, it is under current investigation for further versions of Xcerpt and
it is a short hand for a query term of constant length.
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Query terms are unified with database or construct terms using a non-standard uni-
fication called simulation unification, which has been investigated in [7]. Simulation
unification is based on graph simulation [1] which is similar to graph homomorphisms.

Typed Xcerpt. is the basis for (static and dynamic) type checking of Xcerpt and for
the optimization presented in this article. In a (fully) typed Xcerpt program, every
term t is annotated with a disjunction of types τ1, . . . ,τn, denoted as t : (τ1| . . . |τn).
Types are defined using a so called “regular rooted graph grammar”, short R2G2. In-
ternally, types are represented as automata, type automata are used for query rewriting.
A type represents a set of data terms valid w.r.t. the given term. A well typed query
w.r.t. a given type is a query that may match some data terms that are valid w.r.t. the
given type.

R2G2 is a slight extension of regular tree grammars [6], the extensions cope with
typed references (not introduced here) used to model graph shaped data and unordered
child lists (neither introduced) as defined in Xcerpt.

While R2G2 grammars are convenient for the user, R2G2 is translated into an instance
of a tree automaton model appropriate for processing. Tree automata for ranked trees are
well established [10]. As Xcerpt and XML is based on an unranked tree model, a new
automaton model specially tailored for unranked trees has been proposed [2]. A non-
deterministic regular tree automaton M is a 5-tuple (Q,Δ ,F,R,Σ) with label alphabet
Σ , states Q, final states F where F ⊆ Q, transitions Δ where Δ ⊆ (Q×Σ ×Q×Q) and
a set of root transitions R with R ⊆ Δ . 1 The unorthodox about these automata are the
edges—they are hyper edges of arity 3. An edge (s, l,c,e) represents a transition from
state s to state e consuming (in the sense of automata acceptance) a data term with label
l and a sequence of child terms accepted by a part of the automaton with start state c.
Figure 1 shows an example automaton used through out the reminder of this article as
example type.

In practice, various atomic data types like string, integer, and boolean also exist, but
as they are arguably not relevant for structure based optimization they are omitted here.

In this article, in a typed term of the shape t : τ we will consider τ to correspond to
an edge in the automaton. The example data term in the caption of figure 1 is hence
type annotated under M as
z[ a[ c[]:(6,c,8,9),d[]:(9,d,10,11)]:(2,a,6,7)]:(1,z,2,3).

3 Rules for Completing Queries Under a Schema

The previous sections have established the formal aspects of the query and schema
language employed and intuitively established the aim of rewriting incomplete queries
under a given schema. The following section defines in a precise and formal manner a
set of rules for this task.

Recall, that these are merely equivalence rules and not a full optimization algorithm.
Note also, that for simplicity these rules apply only to non-recursive schemata (no re-
cursion in either depth or breadth). However, this is only needed due to the naive ap-
plication of the rules until no further expansion of rules is possible. This limitation is

1 Usually we need just one root transition, but for technical reasons it is convenient to have a set
of root transitions.
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M = ( { 1, . . . ,20},
{ (1,z,2,3),

(2,y,4,5),
(2,a,6,7),
(6,c,8,9),
(9,d,10,11),
(6,b,12,13),
(13,d,14,15),
(6,b,16,17),
(17,c,18,19),
(19,d,20,21)},

{ 3,4,7,8,10,12,14,16,18,20},
(1,z,2,3),

{ a,b,c,d,y,z})

1 3

25
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7
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20

z

y a

cd b d

b c d

Fig. 1. This automaton represents the type used in the following rewriting rule example. An ex-
ample data term valid w.r.t. this type is e.g. z[ a[ d[],c[] ] ].

not needed if these rules are part of an optimization algorithm that chooses when to fur-
ther expand and when to stop (e.g., because the size increase offsets the gain from the
reduction of incompleteness—cf. Section 5). Furthermore, no order of application for
the rules is given—see also the outlook for a brief discussion on possible optimization
strategies incorporating our rules. For the examples in this article, we have chosen to
apply the rules in the most convenient way.

3.1 Prerequisites

There are a number of convenience functions that allow more concise rule definitions:
(1) HORIZONTALPATHSTOENDSTATES(s) (hptes): The hptes function takes as ar-

gument a state s and returns a set {τ1 = [t11 , . . . ,t1m1
], . . . ,τn = [tn1 , . . . ,tnmn

]} containing
lists of paths τi from s to all end states reachable from s.

(2) HORIZONTALPATHSTOSTATES(s1, s2) (hpts): For a given state s1 of an R2G2

graph, the hpts function returns a set of all paths τi through the graph which begin with
s1 and end with state s2.

(3) MAP(T, E): Given an Xcerpt term t and a sequence of transitions (edges) E =
[e1, . . . ,en] in a given R2G2 graph, map returns the sequence [t : e1, . . . ,t : en].

3.2 The Set of Rules

Now the rules for rewriting queries are defined. Afterwards, and before describing how
the rules actually work, we give an example demonstrating the effects of rule application
to an example query (Figure 3.2).

(desc t : τ) : (s,l,c,e)
l[[(desc t : τ) : (s′,l′,c′,e′)]] : (s,l,c,e) (DESC1)

var X : τ
var X ->� : τ

(VAR)

(desc t : τ) : (s,l,c,e)
t : (s,l,c,e) (DESC2)

� : (s,l,c,e)
l [[ ]] : (s,l,c,e)

(STAR)
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l[[t1,t2, . . . ,tq]] : (s,l,c,e)

or

⎡

⎣
· · ·

l[map(�,z1),t1,map(�,z2),t2, . . . ,map(�,zq), tq,map(�,zq+1)]
· · ·

⎤

⎦

z1, . . . ,zq+1 ∈ hpts(c,st1)× hpts(et1 ,st2)× . . .× hpts(etq−1 ,stq)× hptes(etq)
(PARTIAL)

1:

2:

3:

4:

5:

desc (a[[var X → c]] : (2, a, 6, 7)): (1, z, 2, 3)
DESC1

z[[ (desc (a[[var X → c]] : (2, a, 6, 7)): (2, a, 6, 7))]] : (1, z, 2, 3)
DESC2

z[[ (a[[var X → c]] : (2, a, 6, 7))]] : (1, z, 2, 3)
PARTIAL

z[ (a[[var X → c]] : (2, a, 6, 7))] : (1, z, 2, 3)
PARTIAL

z[ or[ a[var X → c, d], a[b, var X → c, d] ]

Fig. 2. Application of our rules to an example query. The applied rules are stated at each line to
illustrate the way the query changed from line to line.

The example query 1 binds elements of type c occurring immediately beneath any a
to the variable X. The cs may occur at any position within the list of a’s children. There-
fore, the query contains incompleteness in depth (the desc construct) and in breath (the
double brackets).

The first step in our example applies the DESC1 rule (responsible for descendent ex-
pansion) in order to remove the depth incompleteness. This rule expands a desc t which
is queried against a node with label l by replacing it with a partial subterm specification
for the node with label l. Please note that because of the subterm specification of the
l labelled node being partial after applying this rule, the R2G2 graph node s′ might be
any of the states connected (horizontally) to c. Applying the rule results in an “inwards
moved” desc, illustrated in line 2 of Figure 3.2.

Type checking now reveals that a second iteration of this rule is not necessary, be-
cause elements with label a are only allowed to occur immediately beneath z labelled
nodes. This means that the desc in step 2 is not needed anymore and could be removed.
This is achieved by applying rule DESC2 and results in query 3.

Now the depth incompleteness has completely been removed, but the query still con-
tains incompleteness in breath. In Xcerpt incompleteness in breath means partial sub-
term specification. Using the list of “subpaths” provided by the hptes function, a partial
content model can be expanded to become total by the help of the most general node
�. (The �s themselves can then in turn be specialized in a possible follow-up step.)
However, in general the double brackets or braces may contain a list of the subterms
the regarding node must possess, but do not preclude additional subterms in the data
(as double brackets or braces indicate partial query terms). The PARTIAL rule (“par-
tial specification expansion”) covers this (using st as possible start states of the term t
and et as its possible end states). Intuitively, it states that any partial query term t with
sub-terms t1, . . . ,tq and content model start state c can be complete to a disjunction of
total query terms in the following way: for each path through the content model of t
that touches also the given sub-terms t1, . . . ,tq (in that order), we generate one disjunct
where that path is explicitly unfolded. More precisely, the z1, . . . ,zq+1 represent one
such path through the content model of t that touches, in order, each of the t1, . . . ,tq:
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the path is partitioned at the t1, . . . ,tq with z1 being any possible path from the content
model start state c to st1 (the start state of t1), zi for 1 < i <= q the path from the end
state of ti−1 to the start state of ti, and zn the path from the end state of tq to an end
state of the schema automaton. Each of the zis is a sequence of types representing its
segment. For each combinations of zi’s a disjunct is generated where the actual zi is un-
folded into the missing siblings (using, as above, the � notation for elements restricted
only by their type).

In the example query 3 this rule can be applied twice: once for the outermost partial
term and once for the inner (with a label). The outermost can be simply dropped as
there is just one possible path containing an a label in the R2G2 graph of our schema on
the “child level” of z (omitting the superfluous or which could be rewritten by general
normalization rule, cf. Section 5). This results in step 4, of which the inner partial term
can be addressed. Here, however, we have a choice of several paths through the R2G2

graph containing the required c labelled edge. The final result of the rule application
to our example query is thus step 5, which the expanded list of all a elements possible
under the query’s constraints.

The rules VAR and STAR are added merely for convenience in handling � in the
rewriting process. They have been implicitly applied in steps 4 and 5 and will there-
fore not be illustrated with examples themselves. With VAR (variable specialization), a
variable X of type τ (as might be used in a typed Xcerpt query) can be transformed to
a variable binding, where X is bound to a (concrete) node � of type τ . Here one can
also recognize the flexibility of �: it can represent a node of any type and nevertheless
be handled like any other concretely given node. With the rule of star specialization,
STAR, we can transform the general � to an explicitly labelled term.

To conclude the discussion of the rewriting rules, please note that though we have
given only rewriting rules concerning ordered subterm specifications, this is no limita-
tion to the approach. On the level of the rewriting rules, the difference between ordered
and unordered subterms is just notationally. In each of the above rules, the brackets may
be replaced by braces. Therefore, the details of handling unordered subterm specifica-
tions are left out.

4 Related Work

Rewriting and minimization of queries is as central to Web queries as it has been to
queries on relational databases. Often some form of normalization to rewrite undesir-
able language features into equivalent expressions is employed, e.g., the removal of
reverse axis in XPath optimization [14].

On the remaining language, previous work has mostly concentrated on removing
depth incompleteness (in form of regular path expressions (short RPEs) or XPath’s
descendant axis).

ForWebqueriesusingregularpathexpressions(shortRPEs), [11]givesapracticalalgo-
rithm for rewriting RPEs containing wild cards and a closure axis like XPath’s
descendant. They employ, as we do in this work, graph schemata and automata for
processing such schemata. However, as the queries they consider are only regular path
expressions, they can also use an automaton for (each of) the regular path expressions
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to be rewritten. Our approach is at the same time broader and more focused: Due to the
limitation to RPEs they can only consider rewriting of depth incompleteness, whereas we
consider also breadth (and briefly order) incompleteness. However, their approach can
obtain rewritings in cases where our approach fails or produces undesirably large results.

On XPath containment and minimization, the essential results for our work are posi-
tive (polynomial time algorithms exist) if only tree pattern queries (understood as XPath
queries with only child and descendant axis and no wild card labels) are considered, for
details see [16].

Our approach differs from these works in rewriting not only vertical path expressions
(involving only child and descendant) axis, but in considering also breadth (and briefly
order) incompleteness. In this aspect, it is more closely related to approaches from area
(3) such as [9], where a heuristic optimization technique for XQuery is proposed: Based
on the PAT algebra, a number of normalizations, simplification, reordering, and access
path equivalences are specified and a deterministic algorithm developed. Though the al-
gorithm does not necessarily return an optimal query plan it is expected and experimen-
tally verified to return a reasonably good one. Our approach could be employed in such
a framework assuming a cost model where depth, breadth or order incompleteness is
considered more expensive than complete, but under a given schema equivalent queries.

Whereas none of the above discussed approaches considers breadth and order incom-
pleteness in the way we do in this work, some relation regarding such incompleteness to
works on using schema information for pruning query processing against XML streams
is noticeable. [17] proposes such a use of schema information.

Again, our proposed techniques for removing breadth incompleteness can be ex-
ploited in such a scenario. In case the schemata are rather regular, our techniques
might even give rise to fixed memory constraints for the streamed processing, cf. [13].
However, the details of such an exploitation are still open.

5 Outlook and Conclusion

The previous section concludes the discussion of the equivalences for reducing or in-
troducing (depending on the reading direction) incompleteness in Web queries. These
equivalences, however, are only the first step to an automatic optimization of Web
queries w.r.t. incompleteness. To be of practical use, they need to be integrated into
an (necessarily heuristic, cf. Section 4) optimization algorithm such as [9].

It is worth noting, that elimination of any kind of incompleteness leads to no practi-
cally useful heuristic: Eliminating all breadth incompleteness, i.e., rewriting all partial
subterm lists in total subterm lists. This is clearly infeasible, if types may occur in
many different combinations as siblings of a node, as, e.g., in HTML where most ele-
ment types may be combined with most other element types. In many cases it is even
impossible, as repetition in breadth (i.e., any content model with kleene-stars involved)
of a schema gives rise to infinite disjunctive query completions. A practical heuristic
needs to implement some cut-off point where this expansion is no longer useful. Simi-
lar arguments apply for the elimination of all depth and order incompleteness. Infinite
query completions arise with recursive schemata in depth, though completion of depth
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incompleteness is often more promising, as most practical Web documents and
schemata have rather limited nesting depths. Despite these remarks, simple heuris-
tics may be applicable if certain assumptions on the schemata are made such as upper
limits on the number of possible parent and sibling types a given schema type may
combine with.

The proposed equivalences are a small, though, in our opinion, important part of the
optimization rules applicable for Web queries. Combination and integration with other
forms of query optimization and rewriting for Web queries has not yet been considered.

If the proposed equivalences are to be employed in an XPath or XQuery context,
the rewriting of reverse axes such as ancestor, cf. [14], in XPath is required as a
precondition, since the discussed rules assume forward-only expressions (since these
have mostly the same expressiveness as expressions allowing also reverse axes).

We have not yet integrated the discussed equivalences into an optimization algo-
rithm, and thus experimental results on their practical use are still open.

Conclusion

In this paper, we present a novel look on incompleteness in Web queries expressed, e.g.,
in Xcerpt or XQuery. Incompleteness is one of the distinguishing features of Web query
languages compared to languages such as SQL. However, incomplete queries are often
considerably more expensive to evaluate than complete queries. Moreover, manually
eliminating incompleteness robs Web query languages of one of the most used and
most convenient features, the ability to specify data of interest without considering the
context. Therefore, we propose to exploit schema information for automatic rewriting
of Web queries containing incompleteness where applicable.

We propose a set of equivalences for rewriting graph-shaped Web queries on graph-
shaped semi-structure data that allows the introduction or removal of all three forms of
incompleteness (though order incompleteness is only briefly discussed). These equiv-
alences form the foundation of a flexible treatment of incomplete Web queries beyond
just the treatment of depth incompleteness as in previous work.

Ongoing work is on the development of an heuristic optimization algorithm that
chooses when to apply these equivalences and to experimentally verify the practical
improvement to query evaluation that can be obtained through these equivalences.
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9. Che, D., Aberer, K., Özsu, T.: Query Optimization in XML Structured-document Databases.
The VLDB Journal 15(3), 263–289 (2006)

10. Common, H., Dauchet, M., Gilleron, R., Lugiez, F.J.D., Tison, S., Tommasi, M.: Tree au-
tomata techniques and applications. http://www.grappa.univ-lille3.fr/tata
(1999)

11. Fernandez, M.F., Suciu, D.: Optimizing Regular Path Expressions Using Graph Schemas. In:
Proc. Int’l. Conf. on Data Engineering (ICDE) (1998)

12. Koch, C.: On the Complexity of Nonrecursive XQuery and Functional Query Languages on
Complex Values. In: Proc. ACM Symp. on Principles of Database Sys. (PODS) (2005)

13. Olteanu, D.: SPEX: Streamed and Progressive Evaluation of XPath. IEEE Transactions on
Knowledge and Data Engineering (2007)

14. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking Forward. In: Chaudhri, A.B., Un-
land, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490, Springer, Heidelberg
(2002)

15. Schaffert, S., Bry, F.: Querying the Web Reconsidered: A Practical Introduction to Xcerpt.
In: Proc. Extreme Markup Languages (2004)

16. Schwentick, T.: XPath Query Containment. SIGMOD Record 33(1), 101–109 (2004)
17. Su, H., Rundensteiner, E.A., Mani, M.: Semantic Query Optimization for XQuery over XML

Streams. In: Proc. Int’l. Conf. on Very Large Data Bases (VLDB) (2005)

http://www.grappa.univ-lille3.fr/tata


M. Marchiori, J.Z. Pan, and C. de Sainte Marie (Eds.): RR 2007, LNCS 4524, pp. 329–338, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Attaining Higher Quality for Density Based Algorithms 

Morteza Haghir Chehreghani1, Hassan Abolhassani1, 
and Mostafa Haghir Chehreghani2 

1 Department of CE, Sharif University of Technology, Tehran, Iran 
{haghir,abolhassani}@ce.sharif.edu 

2 Department of ECE, University of Tehran, Tehran, Iran 
m.haghir@ece.ut.ac.ir 

Abstract. So far several methods have been proposed for clustering the web. 
On the other hand, many algorithms have been developed for clustering the 
relational data, but their usage for the Web is to be investigated. One main 
category of such algorithms is density based methods providing high quality 
results. In this paper first, a new density based algorithm is introduced and then 
it is compared with other algorithms of this category. The proposed algorithm 
has some interesting properties and capabilities such as hierarchical clustering 
and sampling, making it suitable for clustering the web data. 

1   Introduction 

Clustering the data is an important task in data mining that can be done as a  
pre-processing phase. This task has a great significance on the web; because it can be 
used for improving the search engines and the web crawling operations. Up to now 
various methods have been introduced for clustering the web, more of which use 
techniques such as link analysis [6], [7], [10], content mining [11], [12], and 
combination of them [13], [17]. At first these methods were based on the text mining 
techniques. Then gradually link based algorithms such as hub and authority concepts 
[10], Graph and Spectral Clustering [18] and Page Rank [3] were developed. In 
continuation another category of algorithms have been developed that use 
combination of link and content. 

For structured data various methods have been developed [8], [12], [15] with the 
density based algorithms as one important category among them. The main idea of 
these algorithms is that first a core point is found and then the associated 
neighborhood distance is investigated. Then according to various criteria, other 
neighborhoods are found and this process continues until creation of all of clusters 
[1], [5], [14].  

One thing that until now does not have dealt with enough is the use of these 
algorithms for clustering the web data. We need to apply some improvements on 
existing algorithms to be consistent with new requirements of the web environment. 
Density based algorithms are mainly used for clustering the spatial data and since web 
documents have a large number of dimensions, it seems that using these algorithms in 
web will be difficult. As we will deal in this paper, we can reduce the number of 
dimensions by using techniques such as LSI and then prepare the web data for 
applying density based clustering.  
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Density based algorithms try to find clusters according to the density of the points 
in different regions. Some examples of density based clustering methods are 
DBSCAN [5], GDBSCAN [14], Optics [1], and DBRS [16]. DBSCAN is the first 
density-based algorithm. In this algorithm for creation of a new cluster or extending 
an existing cluster, a neighborhood distance with radius Eps must contain at least a 
minimum number of points denoted by MinPts. This algorithm uses R*-tree [2] data 
structure to find the neighborhood distance of a point in log n time complexity.  

DBSCAN first, selects a random point q. If its neighborhood is sparse then q is 
labeled as noise. Otherwise, a cluster is created and all points in q’s neighborhood are 
placed in this cluster. Then the neighborhood of each q’s neighbors is examined to see 
whether it can be added to the cluster. This process continues to extend an initial 
cluster as far as possible. Then another unlabelled point is selected and the process 
continues. If a dataset has clusters with widely varying densities, DBSCAN is not able 
to handle them efficiently. Since all neighbors are checked, much time may be spent 
in dense clusters for examining the neighborhoods of all points.  

For overcoming this problem, Optics [1] after finding the neighborhood, orders its 
points. By finding new dense neighborhoods, the points of these regions are also 
sorted with previously ordered points and then for next expansion, one point with 
minimum distance within the set of ordered points is selected. If there is no point for 
expansion, a new un-clustered point is selected and the process continues. However, 
Optics doesn’t solve the problem completely. In fact, there is no difference between 
regions with high and low densities from the point of view of this algorithm. 
DBSCAN is not suitable for finding approximate clusters in very large datasets. So, 
DBRS has been offered in [16]. DBRS iteratively picks an un-clustered point 
randomly and checks its neighborhood. If it was sparse, considers it as noise. 
Otherwise, if one or more points from the neighborhood belong(s) to a previously 
created cluster(s) all points of this neighborhood join to that cluster(s). Otherwise, a 
new cluster with these points is created. In this algorithm, the next point for expansion 
is selected from un-clustered points and so DBRS can find several clusters 
simultaneously.  

The proposed algorithm in this paper is a density based algorithm that uses 
advantages of both Optics and DBRS. The algorithm has another advantage too: It 
can create hierarchical clusters making it useful for clustering the web data. The 
remaining of the paper is organized as follows: In section 2, the proposed algorithm is 
presented with time and memory analysis as well as other properties. Section 3 
contains experimental results and finally conclusion and possible future 
improvements are given in sections 4 and 5. 

2   Proposed Algorithm 

In this section first we describe the algorithm and its time and memory complexity 
analysis. Then we explain the advantages of the algorithm. 

2.1   Introducing the Algorithm 

The informal description of the algorithm is as follows. At first, the algorithm for each 
point finds its neighborhood points. Then it checks whether this neighborhood satisfies 
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dense condition or not. In the case that the neighborhood would not be dense, another 
point is selected by random and its neighborhood is found. But if it satisfies dense 
conditions, the points inside the neighborhood participate in the process of ordering. In 
this sorting process, all the points inside neighborhood distances of all potential cores are 
ordered incrementally based on their distance to the nearest associated core. To keep such 
ordering a MinHeap data structure is used. Every time a dense neighborhood distance is 
found, the points existing in this region are inserted into the MinHeap, which contains 
previous sorted points. Of course if a smaller distance for a point (border point) would be 
discovered, this point and its distance in the MinHeap are updated.  

Algorithm: (Data , R , MinPts , MaxPts , IR , LNum) 
//R: neighborhood radius  
//MinPts: minimum required points for being a dense distance 
//MaxPts: maximum points from a neighborhood that can be inserted in the heap 
//IR: Internal Radius for decreasing the neighborhood distance in the dense regions 
//LNum: Number of desired Levels 

1 for each object in Data: 
2 NList = FindNeighbors( object , R , MinPts ); 
3 if (NList.count > MaxPts): 
4 NList = FindNeighbors( object , IR , MinPts ); 
5 SortByMinHeap(NList);   // while insertion, updates the previously inserted border 

points.  
6 else:   
7 SortByMinHeap(NList);   // while insertion, updates the previously inserted border points. 
         // Inserts each point of seed in MinHeap in a form: (CoreID,BorderID,Distance)   
8 Initialize e by R/LNum or other values that is dependent to application And MaxLevel by 1; 
9 while (! EmptyMinHeap): 
10 d=GetMin(MinHeap); 
11 isFirst = true; 
12 for each Cluster Ci in ClusterList that Ci.Active is true: 
13 if ( hasIntersection ( d.Neighbors,Ci ) ) : 
14 if (isFirst == true): 
15 isFirst = false; 
16 if ( d.Distance –Ci.Distance > e ): 
17 AddNewLevel(Ci,d); 
18 else: 
19 merge( Ci,d.Neighbors ); 
20 else: 
21 if ( d.Distance –Ci.Distance > e ): 
22 AddNewLevel( Ci,d );  
23 else: 
24 merge( Ci,d.Neighbors ); 
25 deleteCluster( Ci,ClusterList ); 
26 if (isFirst == true): 
27 CreateNewCluster( null , d.Neighbors, d.Distance , MaxLevel ) 

Add NewLevel(&Ci , &d): 
28 Ci.Active = false; 
29 newCluster = CreateNewCluster( Ci , d.Neighbors , d.Distance , Ci.Level+1 ); 
30 if ( newCluster.Level > MaxLevel ) 
31 MaxLevel = newCluster.Level 

Fig. 1. Representation of proposed algorithm 

When all neighborhood regions are found and their corresponding points are 
inserted to the heap, this stage is finished. 
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Then in the second stage, the elements stored in MinHeap are retrieved one by one 
to construct the clusters. In every extraction, the extracted element (newly created 
cluster = neighborhood distance) is checked, if it has intersection with a previously 
constructed cluster, this neighborhood distance joins to it. This process is repeated for 
all previously constructed clusters. Therefore in joining process it is possible to join 
more than two clusters because the newly constructed one is filling the gap between 
some previously constructed ones. Also, in joining process it is possible that the 
composite cluster would be a more general cluster that should be located in a higher 
level. This happens when the extracted distance extends a cluster to a more general 
one or it fills the gap between the two or more clusters. For these situations a new 
cluster is created in a higher level that includes the new neighborhood distance and 
the specific (joined) cluster(s). This process enables the algorithm to create the 
clusters in a hierarchy manner. 

Joining smaller clusters and creating larger ones is a property that algorithms such 
as DBSCAN and Optics which scan data points locally can not provide and hence 
they can not construct hierarchical clusters. Also it should be noted that DBRS 
operates randomly, while the proposed algorithm prioritize dense clusters (or dense 
parts of clusters) and so opposite of DBRS, provides the possibility of hierarchical 
clustering. The detail of the algorithm is presented in Fig. 1 in details. 

When a neighborhood distance is very dense, a considerable number of points 
are associated to a core point. In such a case, if we operate naively, many points 
are inserted to the heap and hence the performance of the algorithm is highly 
degraded. To prevent this problem, condition if (NList.count > MaxPts) in line 3 of 
the algorithm handles it by considering a smaller neighborhood distance. Since this 
neighborhood is very dense, therefore other points (points that are reside inside the 
original neighborhood but outside the shorter neighborhood) will exist also in the 
neighborhood of some other core points which will be inserted into the heap  
later. 

2.2   Time and Memory Complexity Analysis of the Algorithm 

By examining the algorithm it is clear that lines 2 and 4 have the most complexity. 
Line 2 is related to the query FindNeighbors( object , R , MinPts ) that can be done in 
O(log n) by using the indexed data structures such as R*-tree [2] and SR-tree[9]. In 
the worst case the algorithm executes O(n) query and therefore the time complexity 
for that part would be O(n log n). The function SortByMinHeap() that inserts data into 
a MinHeap, performs an insertion in O(log n) and therefore in average the time 
complexity for n data insertion would be O(n log n). Hence the total complexity of the 
first section is not more than O(n log n). In the second part of the algorithm, all 
elements of the heap are retrieved by using the function GetMin() which has O(log n) 
complexity (with O(1) the minimum element of heap is taken and the reconstruction 
cost of heap is O(log n)). Then next operations for finding the intersections will not 
have a significant complexity. Of course by using in place sorting methods for Heap 
Sort algorithm [4], there is no need for such additional memory. 
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2.3   The Advantages of the Algorithm Compared with Similar Algorithms 

With respect to global sorting, the algorithm has several interesting properties:   

1- By selecting a suitable radius we can create clusters in several levels. The combined 
cluster contains more general concepts, its intra cluster similarity is reduced, and 
the only parameters for controlling the number of levels of hierarchy are the 
neighborhood radius and the least needed points in the neighborhood distance. 

2- As mentioned before, this algorithm contains the advantages of both Optics and 
DBRS algorithms. Even the algorithm can do better, because DBRS operates 
almost blindly whereas this algorithm follows a more awareness approach. 

3- It is possible to do clustering with sampling by selecting some representative points 
from each cluster and then continue the process for determining the higher level 
clusters. In the implementation it is only needed to instead of finding the 
neighborhood distances for all points (in for loop, line 1 Fig. 1), continue while 
satisfying the condition. Then sorting process for the construction of higher level 
clusters continues. This scenario performs well in conditions like in Fig. 2. In the 
left part of the Fig. 2 there is a sample data set for clustering with densities 
relatively similar. For clustering, first the points of neighborhood regions are 
ordered. Then proportional with the kind of hierarchy and by applying a greater 
radius, a large neighborhood distance is found that joins clusters of previous stage. 

  

Fig. 2. Clustering with limited sampling 

4- Another advantage of the algorithm is its incremental ability. It can construct the 
data structure for sorting in an off-line process. Later if new items are added, it only 
needs to add them to the stored data structure. This is not possible in Optics. 

3   Experimental Results 

3.1   Test 1 

In first test we apply the algorithm on a data set; start from MinPts=3 and R=2 and then 
increase the values of each parameter. Results are shown in Fig. 3. Clusters created by 
our algorithm are larger than Optics. It is because of joining method in our algorithm. We 
assume that the goal is to reach clusters of parts f and g of Fig. 3. So our algorithm 
reaches faster (with smaller radius), which means it has faster convergence. 

However, the most important result is the ability of clustering in several levels. In  
Fig. 3, three clusters exist that must be combined to construct a larger and more general 
cluster. Optics doesn't find all of three clusters at first. About Optics, only one cluster has 
related with two others and other clusters are disjointed with themselves. While our 
algorithm first creates three base clusters and then combines then in higher level. 
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3.2   Test 2 

I this section, we study the behavior of the algorithm for sampling. So we stop the 
running after a limited time (about 700 extractions from Min Heap). These conditions  
happen whenever we are restricted by time or processing limitations which are 
 

  MinPts=3 (a , R=2:    

  

MinPts=5 (b , R=3:  

  

  

MinPts=5 (c , R=5:    

  

MinPts=8 (d , R=3:  

  

  

MinPts=8 (e , R=5:  

  

MinPts=8 (f , R=6:  

  

  

MinPts=8 (g , R=7:  

 

Fig. 3. Results of applying the algorithm and Optics for different values 

  
b) Clustering with sampling by Optics 

  
a) Clustering with sampling by algorithm 

 

Fig. 4. The performance of sampling from clusters instead of clustering completely 
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common in clustering task. Results are presented in Fig. 4 part a for our algorithm and 
in part b for Optics. It is clear from results that the algorithm works much better than 
Optics and offers better representatives from clusters. This is because our algorithm 
performs a global ordering of the points while Optics works locally. 

3.3   Test 3 

In this test we apply the algorithm to the web data and evaluate the results. Also, since 
it may be seemed that the algorithm has several parameters which setting them is 
difficult, in following we argue about the setting of parameters. So, at first 424 web 
documents are selected in Politics domain and after creating frequency vectors, LSI 
(Latent Semantic Indexing) technique is applied on vectors to reduce the number of 
dimensions to 2 (this provides a good opportunity for applying spatial data mining 
algorithms). This is done using MATLAB (The Language of Technical Computing). 
LSI transforms the original document vectors to a lower dimensional space by 
analyzing the correlational structure of terms in that document collection such that 
similar documents that do not share the same terms are placed in the same category. 
In the next step, these vectors are given to the algorithm to create desired clusters. 
Since the value of different parameters can affect the quality of clustering, we 
perform the clustering with parameters R=20, MinPts=7, and mutation=1.8 and 
evaluate the results. The result clusters are shown in Fig. 5 part (b). We number the 
clusters in a top-down and left to right BFS order. 

 
 
 

c) a large value for mutation (2.3) 

 

 
b) a medium value for mutation (1.8) 

 
a) a small value mutation (1.2) 

Fig. 5. The effect of mutation on the hierarchy and on the number of levels 

For evaluating the results, several methods have been presented that the most 
important methods are entropy-based methods and F-measure. F-measure combines 
two measures, precision and recall. This measure is defined by (1) and precision (P) 
and recall (R) are obtained by (2). In (2) nj shows the size of cluster j, gi shows the 
size of class j and N (i,j) shows the number of pages of class i in cluster j. 

F-measure (and entropy) only is developed for evaluation of flat clusters (or lowest 
level of hierarchical clusters). So we must adapt F-measure for evaluation of 
hierarchical clustering. We first apply F-measure on clusters without any child 
(lowest level) and then obtain the F-measure of higher clusters from their children. 
We define the Precision of a parent cluster from Precision of its children using (3). 
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PR shows the precision of cluster members that do not belong to sub-clusters. For 
recall we can calculate it from a similar method. But since for finding recall we must 
calculate the RR by traversing all relevant web pages, so a more simple way can be 
done by calculating Recall straightly and without considering pre-calculated values 
for sub-clusters. Using this process the results are shown in Table 1. For more 
evaluation, we apply K-Means and compare the results. K-Means [19] selects K points 
as cluster centers and assigns each data point to the nearest center. The reassigning is 
kept until a convergence criterion is met. Since K-Means is sensitive to the value of K 
(number of clusters), it is executed with K=8, 10, and 12, and the best result is 
selected (Table 2, with K=8). Total F-measure for proposed algorithm is 0.710853 
while for K-Means is 0.603258. These values show the efficiency of the proposed 
algorithm. 

Table 1. Results of applying algorithm on web 
data 

Table 2. Results of applying K-Means on web 
data 

F R P N 
CLU

STER ID 
0.7333783 .81 .67 4071
0.6884285 .61 .79 442
0.7132867 .75 .68 2093
0.6343939 .79 .53 1314
0.7246896 .71 .74 985
0.5929411 .63 .56 576
0.6908571 .78 .62 417
0.8498823 .86 .84 198
0.7734193 .74 .81 329
0.7649673 .76 .77 5310

F R P N 
CLU

STER ID 
0.4838 .41 .59 171

0.5483636 .58 .52 682
0.6260317 .58 .68 343
0.5687394 .72 .47 1174
0.6676119 .71 .63 265
0.5483636 .58 .52 416
0.6293650 .65 .61 377
0.7061111 .82 .62 848

 

In following we pay attention to the effect of parameters on the efficiency of the 
algorithm. Our experiments show that the value of the R is not important and selecting 
an approximate value that can cover the ranges is enough. So we argue on the 
mutation and MinPts parameters. We first apply the algorithm with values R=20, 
MinPts=7, and mutation=1.2, 1.8, and 2.3. The results are shown in Fig. 5. 

As it is obvious from Fig. 5 part b, the value mutation=1.8 constructs appropriate 
clusters. If we decrease mutation (Fig. 5 part a with mutation = 1.2), the number of 
clusters and levels will increase, that some clusters will be created by only some 
extension of a lower cluster. In contrast, by increasing mutation to 2.3 (Fig. 5 part c), 
the mutation from one level to higher one will not occur and the constructed clusters 
will be in one or some limited levels. In following we set MinPts=5 and by changing 
the value of mutation, investigate the effect of this parameter on the results. The 
results are shown in Fig. 6 and Fig. 7. It is shown that both of the number of clusters 
and the number of levels have a reverse relation with mutation. Also it is clear that 
selecting rather near values, doesn't cause a deep change on the number of levels and 
clusters. So we can only have an estimation of MinPts and it is not necessary to 
determine its value precisely. We can find it by some experiments easily. 
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Fig. 7. Number of clusters vs. mutation 

4   Conclusion 

In this paper we proposed a new density based algorithm and then explained its 
advantages compared to other clustering algorithms, i.e. DBSCAN, Optics, and 
DBRS. Main idea behind this algorithm is that by ordering data before starting 
clustering and by combining advantages of both Optics and DBRS algorithms, 
interesting capabilities such as hierarchical clustering and sampling and is 
provided. 

While examining the algorithm and Optics, in addition to the capability of creating 
clusters in multi levels, faster convergence for clusters was observed. Also this 
algorithm provides a good way for limited clustering by sampling. Finally we 
performed some experiments on the web data and concluded that the effect of 
different parameters on the quality of clustering is very low in near ranges and so we 
can find parameters values easily by some simple experiments. Also we extended the 
F-measure for evaluating hierarchical clusters and by comparing the results with K-
Means; the efficiency of the algorithm was concluded. 

5   Future Works 

The proposed algorithm has interesting properties, but also it needs some 
improvements, especially in setting suitable values for different parameters. It seems 
that we can improve the efficiency of the algorithm in two directions: finding the base 
dense units with a more flexible method that would be adaptive for different dense 
regions (associated with R and MinPts), and developing a method for doing hierarchy 
in a better and more precise manner (associated with mutation). It is expected that by 
applying this enhancements the efficiency of the algorithm will considerably 
improved. 
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Abstract. After quantization and classification of the deviations between TM 
and ETM+ images based on approved thresholds, a correlation analysis method 
for the compared calibration is suggested in this paper. Four time points of 
raster data for 15 years of the highest group of land surface temperature and the 
lowest group of vegetation of the Kunsan city, are observed and analyzed their 
correlations for the change detection of urban land cover. This experiment de-
tected strong and proportional correlation relationship between the highest 
group of land surface temperature and the lowest group of vegetation index 
which exceeded R=(+)0.9478, so the proposed correlation analysis model  
between land surface temperature and vegetation will be able to give proof an 
effective suitability to the land cover change detection and monitoring. 

Keywords: LST, NDVI, Correlation Analysis, Landsat ETM+, Classification. 

1   Introduction 

This paper suggests a correlation analysis model between the NDVI(Normalized 
Difference Vegetation Index) lowest area and the highest land surface temperature 
area which uses Landsat-5 TM(thematic mapper) with Landsat-7 ETM+(enhanced 
thematic mapper plus) satellite image in order to extract change pattern for the change 
detection and the spatio-temporal change patterns of  urban area surface temperature, 
suburban area land cover and vegetation. The experiment results of applying the pro-
posed model into change detection in Chollapuk_do Kunsan city area shows that 
correlation analysis model between the NDVI lowest area and the highest land surface 
temperature area which uses Landsat-5 TM with Landsat-7 ETM+ satellite image was 
very efficient in land  cover change detection.    

Markham and Baker presented post-validation coefficient index value for the 
substitution of Planck’s function at each sensor quality, which was needed to apply 
into the equation conversion between DN (Digital Number) and spectral radiation 
of black body when to calculate land surface temperature (LST) using Landsat 
MSS and Landsat TM[3]. Also, Chander and Markham proposed a new revision 
process and dynamic segment range of specific constant like gain or offset in each 
band of radiation correction which reflects the changes of Markham and Baker’s 
equation relationship condition[1]. NASA suggested the approval dynamic scope 
of gain and offset in Landsat ETM+ which had not been proposed by Chander and 
Markham[5]. Melesse extracted land cover specific coefficient which was  
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calculated and analyzed from NDVI (Normalized vegetation index) then, explained 
rainfall outflow which reflects the flow changes for 28 years due to the water 
which was melted at snowed mountains where land and the cities were located 
beneath[4]. This paper is based on NASA method [2] and applies Melesse model 
to Kunsan city area then extract a continuous distribution pattern between LST and 
NDVI using ERDAS IMAGINE 8.7. 

2   Study Area and Data 

Industrial jar is located in the west bound of the study area, Kunsan city, and the agri-
cultural plain is located in the south bound. Saemangeum reclamation district of 
401.00 ㎢ is located between the south bound of Kunsan city and Yellow Sea. North 
and east bound of Kunsan is relatively forest area.  

 

Fig. 1. Study area: Kunsan city Chollabuk_do, Korea 

Table 1. Landsat 7 TM/ETM+ band specifications 

Band1 Band2 Band3 Band4 Band5 Band 7 Band8 Band 6                 Band 
 
Feature 

TM/ETM+ ETM+ TM/ETM+ 

Visible TIR 
Name 

B G R 
NIR MIR SIR 

Pan-
chromatic TM ETM+ 

Spectral Resolution(㎛) 
0.45- 
0.52 

0.53- 
0.61 

0.63- 
0.69 

0.78- 
0.90 

1.55- 
1.75 

2.09- 
2.35 

0.52- 
0.90 

10.40- 
12.50 

Spatial Resolution (m*m) 30*30 30*30 30*30 30*30 30*30 30*30 15*15 120*120 60*60 
Temporal Resolution (day) 16 16 16 16 16 16 16 16 

From band 1 to band 5 and band 7 have same sensor characteristics among Landsat 
TM and ETM+. Band 6 of ETM+ has two sub bands named low and high. Only 
ETM+ has panchromatic band 8.  

Table 2. Landsat TM/ETM+ image pre-processing 

No. Year Sensor Pre-processing 
1 1987.04.18 Landsat5TM Geo-rectification 
2 1995.10.17 Landsat5TM Geo-rectification 
3 1999.05.21 Landsat5TM Geo-rectification 
4 2002.02.14 Landsat7ETM+ Geo-rectification 

The specification detail of 4 time points images are described at table 1. 4 images 
are selected for representing each 4 unique seasons spring, fall, summer and winter, 
respectively. Acquired time of each image is ten to twelve o’clock a.m.  



 Correlation Rules and Ontologies Acquisition in Knowledge Extraction of Image 341 

3   Image Pre-processing 

3.1   Land Cover Pre-processing 

The satellite images used in this study, are distributed by ETRI and pre-processed by 
their image pre-processing component, then extracted the region of interest according to 
the 1:25,000 scale administrative boundary layer of National Geographic Intelligence 
Agency of Korea. After the geo-rectification, all images are classified by non-supervised 
ISODATA clustering algorithm which is built in the ERDAS IMAGINE 8.7. 

3.2   NDVI Pre-processing 

NDVI is the post-calibrated index of green intensity on the vegetation cover[6]. The 
principal of NDVI is that the reflexes rates are differ at the NIR and band 3, so these 
differences can produce an image which represents the conditions of green plant. This 
equation is denoted as following formula (1)[4]. 

NDVI = ( NIR - Red ) / ( NIR + Red )            (1)  

Following figure 2 shows the algorithm to get the land surface temperature, 
NDVI specific coefficient ε (land cover specific coefficient ε), then, analyze the 
correlation between LST (land surface temperature) and NDVI of continuously 
changing land cover. 

 

 

Fig. 2. Flow chart of correlation analysis algorithm 
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In the figure 2 when the NDVI of ETM+ images are greater than zero, we extract 
land cover specific coefficient ε, the substitute it as constant K1 to get the LST, oth-
erwise we get the LST directly from TM or ETM+ images. The rest of the proposed 
algorithm is correlation analysis between LST highest area and NDVI lowest area 
after ISODATA clustering. 

3.3   LST Pre-processing 

1) NASA equation between spectral radiance and temperature 
 

Based on NASA model, this study calibrates surface temperature from the DN (Digi-
tal Number) which represents the absolute radiation of land cover. First of all, when 
each DN of TM and ETM+ images is given, we can subtract the spectral radiance Lλ 
(Lλ-TM, Lλ-ETM+) using the official NASA approval ranges LMINλ and LMAXλ in  
following formula (2)[1] [4] [5]. 

( ) ( )calmax calmin cal calmin

LMAX LMIN
LMIN

Q Q Q Q
L λ λ

λ λ
−

= +
− × −

  (2) 

a. Spectral radiance estimation in Landsat TM 
 

By the above formula (2). In case of the least post-calibration value Qcalmin (DN) is 
equal to zero, the Lλ-TM is able to be calculated by following linear expression formula 
(3)[1] [5].  

G Q BTM rescale cal rescaleLλ = × +−     (3) 

Table 3 is the example of official dynamic range of post-calibration scale values. 

Table 3. TM spectral radiance, Post-calibration Grescale, Brescale dynamic ranges 

Band LMINλ LMAXλ Grescale Brescale 
6 1.2378 15.303 0.055158 1.2378 

 
b. Spectral radiance estimation in Landsat ETM+ 

 

In the above formula (2), LPGS (ESO Data Gateway) uses 1 as the least post-
calibration value Qcalmin, while NLAPS (Earth Explorer) uses 0. Based on this folicy, 
we can get the absolute spectral radiance by the following formula (4)[5]. 

" " " "gain Q offsetETM calLλ = × +−    (4) 

There is no need to rectify the spectral radiance value in ETM+ because the two  
subands in ETM+ band 6, named Low gain 6 (1) and High gain 6 (2) are separated 
always. 

Table 4. ETM+ spectral radiance LMINλ and LMAXλ "offset" "gain" ranges 

Low Gain High Gain 
Band 

LMINλ LMAXλ LMINλ LMAXλ 
6 0.0 17.04 3.2 12.65 
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2) Landsat TM/ETM+ Temperature  
 

a.    NASA model to extract temperature from TM/ETM+ images 
 

As discussed in the above formulas (1) to (4), there is the relationship between the 
spectral radiance value Lλ ( Lλ-TM,  Lλ-ETM+) and the absolute  temperature °K(Kelvin). 
This can be denoted like following formula (5)[4] [5]. 

2
(( / ) 1)1

( )
K

ln K L
T K

λ +
° =     (5) 

In the formula (5), DN means raster pixel value, Lλ (Lλ-TM, Lλ-ETM+) means the en-
ergy strength of solar light, and T means the absolute temperature of the land surface. 
K1 is the post-calibration constant of spectral radiance, and k2 is the post-calibration 
constant of absolute temperature. 

Table 5. Landsat 5/7, TM/ETM+ thermal band calibration constants 

                   sensors 
constants 

K1 K2 

Landsat-5 TM 607.76 1260.56 
Landsat-7 ETM+ 666.09 1282.71 

 
b.    Melesse model to extract temperature from NDVI coefficient 

 

Melesse model uses NDVI coefficient, the extract temperature from the same Planck 
function presented at formula (6)[4]. 

2
(( / ) 1)1

( )
K

TNDVI ln K L
K

ε λ× +
° =                                          (6) 

In the formula (6), T means absolute temperature of land surface, Lλ is calibrated by 
formula (2) with options like Qcalmin = 1, Qcalmax = 255,  Lmax = 17.04 [W/(m2sr1 μ m1)], 
and Lmin = 0 [W(m2sr1 μ m1)].  ε means band specific coefficient and is came from 
NDVI which is calculated by formula (1). 

In case of NDVI > 0, ε  is 1.009 +  0.047 * (ln NDVI), otherwise ε takes constant 1. 
K1 means spectral radiance post-calibration constant 666.09 (Landsat-7 ETM+), and K2 
means temperature post-calibration constant 1282.71K (Landsat-7 ETM+). 

4   Experiment Result and Evaluation 

Land cover specific coefficient εs that canbe substitute spectral radiance post-
calibration constant K1 of ETM+ images are presented at table 6. NDVI-means in the 
study area are in the range of positive until 1995, then are in the range of negative 
from 1999. In the year 2002, since the image is an ETM+ and the NDVI-mean indi-
cates -0.014 and the NDVI-mode indicates -0.00044, NDVI- ε  should be 1. However 
we separate 2002.02.14 as 2002.02.14-a and 2002.02.14-b. 
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Table 6. NDVI ranges and NDVI-εfor estimation of land surface temperature 

NDVIs 
Year 

NDVI- 
Min 

Max Mode Mean ε 

1987.04.18 -0.5 0.543 -0.00095 0.0013 0.6966 
1995.10.17 -0.705 0.688 -0.00024 0.0533 0.8712 
1999.05.21 -0.571 0.591 -0.00146 -0.0003 1 

2002.02.14-a -0.508 0.496 -0.00044 -0.014 1 
2002.02.14-b 0.113 0.113 0.113 0.113 0.9065 

In case of 2002.02.14-b, land cover specific coefficient ε* K1  substitute K1. As the 
result of this substitution, temperature increases from +6.55 to +11.817, and the de-
viation increases -1.452 to -6.717. These means that 2002.02.14-b method is worse 
than 2002.02.14-a. 

Table 7. Observed temperature and estimated land surface temperature(unit: °C) 

Temps 
Year 

Observed Landsat TM/ETM+ LST Dev. 

2002.02.14-a 5.1 6.552 -1.452 
Avr. 17.3 16.45 0.85 

2002.02.14-b 5.1 11.817 -6.717 
Avr. 17.30 17.77 -0.47 

This paper applied the method 2002.02.14-a to get the land surface temperature 
from satellite images and the method of 2002.02.14-b was not applied.  

 

  
(a) 1987.04.18 LST  (b) 1987.04.18 NDVI 

  
(c) 1995.10.17 LST  (d) 1995.10.17 NDVI 

  
(e) 1999.05.21 LST  (f) 1999.05.21 NDVI 

  
(g) 2002.02.14 LST  (h) 2002.02.14 NDVI 

Fig. 3. Land cover clustering of LST and NDVI 
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Four time points of Kunsan city area images representing four unique seasons are 
selected and pre-processed, then classified by the non-supervised ISODATA cluster-
ing algorithm. (b), (d), (f) and (h) of figure 3 show that NDVI lowest areas are  
changing to the changes of compared LST.  
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Fig. 4. Kunsan city NDVI histogram 

When it sees figure 4, the left half from NDVI zero is growing sharpen more as the 
time passing. The result of experiment that analyze the correlation between this NDVI 
lowest area and the LST highest area is presented at table 8. 

Table 8. Correlation coefficient between the highest LST and the lowest NDVI 

             Variables 
Year LST Highest (㎢) NDVI Lowest (㎢) 

LST Highest 1  
NDVI Lowest R=(+)0.947822772 1 

 

Fig. 5. Correlation scattergram between the highest LST and the lowest NDVI 

In the Kunsan city area, LST highest area changes within the range of 42.40 ㎢ -
159.51 ㎢, the median is 75.02㎢, the standard error is 25.26㎢, and the SD is 50.53㎢. 
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Also, NDVI lowest area changes within the range of 21.60㎢ – 27.37 ㎢, the median  
is 24.27㎢, the standard error is 1.25㎢, and the SD is 2.50㎢. 

The result of experiment shows that the max value of LST highest area is 112.1 
㎢ in 1997, the min value is 67.9 ㎢ in 1995, the max value of NDVI lowest area is 
27.3 ㎢ in 1987, and the min value is 21.6 ㎢ in 2002. The overall pearson’s correla-
tion coefficient is r = (+) 0.9478 between LST highest area and NDVI lowest area. 
The result corresponds to the conventional researches that there is negative correla-
tion between LST and NDVI. Furthermore our result shows that the LST highest 
area and NDVI lowest area are the independent variables in the study of surface 
change detection.  

5   Conclusion 

In order to find out the efficient method to detect the changes of cities, this study 
observed land surface temperature of land cover and vegetation pattern after design-
ing a correlation analysis between LST highest area and NDVI lowest area. This pa-
per defined the process to convert the land surface temperature from satellite images, 
those are varying Landsat7 TM/ETM+ respectively. Especially, in case of ETM+ we 
adopted Mellesse’s NDVI specific LST calculation coefficient then we applied them 
to Chollabuk_do Kunsan city land cover change detection. This experiment shows the 
result that there is the overall pearson’s correlation coefficient is r = (+) 0.9478. With 
this result we suggest that the raster based LST highest area-NDVI lowest area model 
is very efficient in the field of land cover detection. 
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Abstract. The paper presents an architecture and implementation techniques for
hybrid integration of normal clauses under well-founded semantics with ontolo-
gies specified in Description Logics. The described prototype uses XSB Prolog
both for rule reasoning and for controlling communication with the ontology rea-
soner RacerPro. The query answering techniques for hybrid rules implemented
in this prototype are sound wrt. the declarative semantics, extending the well-
founded semantics of normal programs and are faithful wrt. FOL.

1 Introduction

The objective of this paper is to demonstrate a case of re-use of existing reasoners for
a logically sound integration of rules supporting non-monotonic reasoning with ontolo-
gies formalized in Description Logic (DL).

The paper discusses implementation of a hybrid reasoner that combines XSB Pro-
log [8] with any DIG-compatible ontology reasoner. The objective is to extend normal
logic programs under well-founded semantics by allowing ontological constraints in
the body. We consider hybrid programs, each of which is a pair (T,P) where T is an
ontology specified as a set of DL axioms, and P is a set of normal clauses extended
with queries to T in the bodies. In this paper we consider hybrid programs extending
Datalog, but the presented implementation techniques are applicable to the general case.

A declarative semantics of hybrid programs was defined in our previous work [2]
and is briefly summarized in Section 2. The implementation is based on the operational
semantics of [2] which answers queries by combining SLS-resolution with ontological
reasoning. The operational semantics is sound wrt. the declarative one and complete
for a restricted class of hybrid programs (see [2] for details). In the special case when
the rules of P do not involve negation a hybrid program can be seen as a set of axioms
in FOL. In that case the semantics of a hybrid program is a set of atomic logical con-
sequences of the axioms, and is thus faithful to the semantics of FOL. A related work
based on well-founded semantics does not have this property [4].

The presented prototype extends our previous work [1] where negation in the rules
was not allowed.
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2 Hybrid Programs

In this section we first introduce the syntax of hybrid programs. We then briefly discuss
the declarative semantics of hybrid programs and its operational semantics.

The Syntax. The syntax of hybrid programs is derived from the syntax of the com-
ponent languages. The component languages considered here are Datalog with nega-
tion and some DL-based ontology language. We assume that the alphabets of predicate
letters of Datalog and of the ontology language are disjoint, but both languages have
common variables and constants. A standard Datalog syntax is extended by allowing
ontological constraints to appear in the rule bodies. At the moment we only allow
constraints of the form C(x) or ¬C(x) where C is a concept of the ontology and x
is a variable or a constant. Conjunction of such constraints will be called a conjunc-
tive constraint. By a disjunctive constraint we will mean a disjunction of conjunctive
constraints. Thus, a hybrid rule looks as follows:

R0 :− R1, . . . ,Rk,∼Rk+1, . . . ,∼Rn,C1, . . . ,Cm.

where R0,R1, . . . ,Rn are rule literals and C1, . . . ,Cm are constraints. A hybrid program is
a pair (T,P) where T is an ontology (a finite set of axioms of a DL) and P is a finite set
of hybrid rules with constraints over the alphabet of T . In practice T will be provided
by a declaration associating a short name (prefix) with the URI of the ontology. This is
here done by using the syntax use ’[ontology uri]’ as ’[prefix]’. Any symbol
a that appears in the ontology is represented in the hybrid rules as prefix#a.

The example used throughout this paper consists of the hybrid program P shown in
Listing 1.1. The program P references an ontology modelling a geographical domain
shown in Listing 1.2.

Listing 1.1. An example hybrid program describing a two-person game

us e ’ h t t p : / / dev . m e t a j u n g l e . i n f o / owl / geography . owl ’ a s ’ g ’ .

win (X) :− move (X,Y) , ∼win (Y ) .

move ( g#e , g# f ) :− g# Europe ( g# f ) .
move ( g#c , g# f ) :− g# ComplFinland ( g# f ) .

move ( g#b , g# a ) . move ( g#a , g#b ) . move ( g#a , g#c ) . move ( g#c , g#d ) . move ( g#d , g#e ) .

The hybrid program in Listing 1.1 describes a two-person game, where each of the
players, in order, moves a token from a node of a directed graph, over an edge of the
graph. The nodes correspond to geographical objects specified in an ontology (e.g.
cities) and are represented by constants. Some axioms of the ontology are given in
Listing 1.2. Some edges of a graph (represented in the example by the move facts) are
labelled by constraints (added as constraints to the respective facts). The constraints
refer to the ontology. A move from a position x to a position y is enabled if there is an
edge from x to y and the constraint is satisfied. The predicate win/1 characterizes the
winning positions of the game, as described below.
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Listing 1.2. DL axioms of an ontology modelling a geographical domain

T−Box : Finland � Europe , ComplFinland ≡ ¬Finland
A−Box : Finland(b) , Europe(c) , Europe(d) , Europe(e) , Top( f ) , Top(a) , Top(b)

A position is winning if a move is enabled to a position which is not winning (call
it losing). Obviously a position where no moves are enabled is losing. Thus, position
f is losing. The move from e to f is enabled only if f is in Europe. This cannot be
concluded from the ontology. Consequently we cannot conclude that e is a winning
position. Similarly, we cannot conclude that f is not in Finland which is required for
the move from c to f . However, it follows from the ontology that if f is not in Europe
it is also not in Finland. Hence one of the conditions holds for f . Consequently c is a
winning position: if f is in Europe, e is winning, d is losing and c is winning. Otherwise
f is not in Finland and c is winning.

The positions a and b cannot be classified as winning or losing, since from a one can
always move to b where the only enabled move is back to a. The status of d and e is
also not clear, but for different reasons discussed above. In some, but not all models of
the ontology e is winning and d is losing and in the remaining ones the opposite holds.

The Declarative Semantics. In [2] we define a formal semantics of hybrid programs,
extending the well-founded semantics of normal programs. Here we survey informally
the main ideas. The well-founded semantics of normal programs is three-valued and
gives a fixpoint formalization of the way of reasoning illustrated by the game example,
when the constraints are neglected. It assigns to every element of the Herbrand base one
of the logical values true (e.g. win(c)), false (e.g. win( f )) or undefined (e.g. win(a)).

The constraints added to the rule bodies refer to the ontology. As illustrated by the
example, a ground instance of a constraint may have different truth values in different
models of the ontology. Given a hybrid program (T,P) and a model M of T consider the
set ground(P) of all ground instances of the rules in P. Each of the ground constraints is
either true or false in M. Denote by P/M the set obtained from ground(P) by removing
each rule including a constraint false in M and by removing all constraints (which are
thus true) from the remaining rules. As P/M is a normal program it has a standard well-
founded model. A ground literal p (∼p) is said to follow from the program iff p is true
(p is false) in the well-founded model of P/M for every M. The declarative semantics of
P is defined as the set of all ground literals which follow from the program. Notice that
there may be cases where neither p nor ∼ p follows from the program. This happens if
there exist models M1 and M2 of T such that the logical values of p in the well-founded
models of P/M1 and P/M2 are different, or if the logical value of p in the well-founded
model of P/M is undefined for every model M of T .

The Operational Semantics. The implementation discussed below focuses on answer-
ing atomic queries and ground negated literal queries. We now informally sketch the
principles of computing answers underlying our implementation. They are based on the
operational semantics of hybrid programs presented in [2] by abstract notions of two
kinds of derivation trees, called t-tree and tu-tree which are defined by a mutually re-
cursive definition. These notions extend the well-known concept of SLD-trees to the
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case of hybrid programs, to handle negation and constraints. In the presentation below
the term derivation tree (d-tree) is used whenever the statement applies to both kinds of
trees.

The nodes of d-trees are labelled by goals, consisting of rule literals and constraints.
The conjunction of all constraints of a node will be called the constraint of the node.
The label of the root is called the initial goal of the tree. A leaf of a d-tree is called
successful if it does not include rule literals and if its constraint is satisfiable. The other
leaf nodes are called failed nodes. In every non-leaf node one of the rule-literals is
distinguished. This literal is called a selected literal of the node. As usual, we assume
existence of a selection function that determines the selected literals of the nodes.

For the sake of simplicity we restrict the presentation to the case of ground initial
goals. For a formal general treatment the reader is referred to [2]. In the case when the
initial goal g of a d-tree is ground the tree has the following property. Let C1, . . . ,Ck be
the constraints of all successful leaves of a d-tree t. Then:

– If t is a t-tree then (∃(C1 ∨ . . .∨Ck)) → g. Thus g follows from the program if
∃(C1 ∨ . . .∨Ck) is a logical consequence of the ontology.

– If t is a tu-tree then (¬∃(C1 ∨ . . .∨Ck)) →¬g. Thus the negation of g follows from
the program if ¬∃(C1 ∨ . . .∨Ck) (or equivalently ¬∃C1 ∧ . . .∧¬∃Ck) is a logical
consequence of the ontology.

Thus to answer a ground query g our prototype constructs a t-tree with g as its initial
goal and checks if the respective disjunctive constraint, existentially quantified, is a
logical consequence of the ontology.

We now explain how d-trees are constructed for a given ground initial goal g . This
is very similar to construction of an SLD-tree. Every step is an attempt to extend a tree
which initially has only one node labelled by g. At every step one node n, not marked
as failed, is considered. Let q be the goal of the node, let s be its selected literal and let
C be the conjunction of its constraints. The following cases are considered separately:

1. s is positive. Let h :- B,Q be a (renamed) rule of the hybrid program, where B are
rule literals and Q are constraints, such that:

– it was not used yet for n,
– a most general unifier θ of h and s exists,
– the constraint (C∧Q)θ is satisfiable.

Then a child is added to n with the label obtained from q by replacing s by (B,Q)θ.
If no child of n can be created n is marked as a failed node.

2. s is negative, i.e. of the form ∼l. Two subcases are:
(a) If l is non-ground, or recursion through negation has been discovered (see be-

low) then:
– If the d-tree is a t-tree then the node n is marked as a failed node and won’t

be considered in the next steps of the derivation.
– If the d-tree is a tu-tree then a child is added to n with the label obtained

be removing s from q.
(b) Otherwise l is ground; the step is completed after construction of a separate

d-tree t for l. The kind of the separately constructed tree is different from the
kind of the main tree, thus it is a tu-tree if the latter is a t-tree, and t-tree if the
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latter is a tu-tree. Let C1, . . . ,Ck be the constraints of the successful leaves of t.
If the constraint C′ = C∧¬∃C1 ∧ . . .∧¬∃Ck is satisfiable then a child is added
to node n with the label obtained from q by removing s and replacing C by C′.
Otherwise the node is marked as failed. In particular, if k = 0 (no successful
leaf) C′ is equivalent to C. On the other hand, if some Ci(1 ≤ i ≤ k) is true, the
constraint C′ is equivalent to false and is not satisfiable.

In general the construction of a d-tree may not terminate for recursive rules. Re-
cursion not involving negative literals may produce infinite branches of the constructed
d-tree. Recursion through negation may require construction of infinite number of
d-trees. In our implementation tabling is used and allows to cut the loops in the case
when the same goal re-appears in the process.

3 Reasoner for Datalog with Ontological Constraints

In this section we describe a prototype reasoner for hybrid programs integrating Datalog
with negation and ontological theories. The main objective is to show how existing rule
reasoners and ontology reasoners are re-used for reasoning on hybrid programs. The
prototype re-uses the Prolog engine XSB [8] and a DIG-compliant ontology reasoner
(e.g. RacerPro [5]) for answering queries to hybrid programs.

In Section 3.1 we discuss a transformation technique for re-using an existing rule
reasoner for handling hybrid programs without negation. In Section 3.2 we generalize
this idea to programs with negation.

3.1 Reusing a Prolog Engine for Hybrid Rules

Since XSB cannot handle the ontological predicates in a hybrid program P, we trans-
form P into a standard Prolog program P′ = t(P) via a transformation function t. The
transformed program encapsulates the ontological predicates in Prolog lists. In this way
the variables referred to by the ontology predicates will be processed by the engine
during resolution, but the predicates themselves will never be selected by the engine’s
selection function. At a later stage, the semi-processed ontology predicates can prop-
erly be processed by an ontology reasoner. Thus, after applying the transformation t on
a hybrid program P we can execute the transformed rules P′ using an XSB engine.

An answer produced by XSB for a goal g provides a conjunction of constraints C,
and a substitution θ for the variables of g. For a program P without negation, C implies
gθ in the well-founded semantics of P. (This follows from the soundness of the opera-
tional semantics [2], as obtaining such an answer by XSB corresponds to constructing
a branch of a t-tree for g.)

The original idea of this transformation technique was described in our previous
work [1] and we refer the reader there for more details. Here we demonstrate the tech-
nique on an example. Consider the hybrid program S in Listing 1.3, referencing an
ontology using the prefix o.
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Listing 1.3. Hybrid program S

us e ’ h t t p : / / owl . o rg / example . owl ’ a s ’ o ’ .

p (X,Y) :−
q (X,Y) , r (Y,X) , o#C(X ) .

q ( o#a , o#b ) .
r ( o#b , o#a ) .
q ( o#c , o#d ) .
r ( o#d , o#c ) .

Listing 1.4. Prolog program S′ = t(S)
p (X, Y, [ o__C (X ) | Var_0 ] ) :−

q (X, Y, Var_1 ) , r (Y, X, Var_2 ) ,
append ( Var_1 , Var_2 , Var_0 ) .

q ( o__a , o__b , [ ] ) .
r ( o__b , o__a , [ ] ) .
q ( o__c , o__d , [ ] ) .
r ( o__d , o__c , [ ] ) .

The hybrid program S in Listing 1.3 is transformed via t to the Prolog program S′
shown in Listing 1.4. The program in Listing 1.4 may now be executed by a Prolog
engine and its resulting constraints (collected as a Prolog list) can be verified at a later
stage using an ontology reasoner. Notice the ontology declaration being dropped by
the transformation. This information is however remembered by the controlling system
executing the transformation. For practical reasons, in the transformed program, all
ontology references are prefixed by the ontology declaration prefix (here o) followed
by the characters _ _.

3.2 Implementing the Operational Semantics

The approach described in [1] and outlined above is applicable to programs without
negation. Now we describe how to extend it to implement the operational semantics of
hybrid programs with negation, described in Section 2. We have to construct d-trees (i.e.
t- and tu-trees) for ground goals, and collect the constraints of their successful leaves.
The top-level computation is a construction of a t-tree for a possibly non-ground goal.
Top-level computations are similar to those described above, i.e., of a program without
negation.

To separate constraints from rule literals we employ a program transformation which
is an extension of the one described above. To construct a d-tree and collect its answers,
we use a metainterpreter executing a transformed program.

A main technical problem is that a d-tree may be infinite, and that an infinite recur-
sion through negation may lead to an attempt to construct an infinite set of d-trees. To
cut infinite branches of a d-tree we apply the native tabulation of XSB Prolog. How-
ever, it turns out that the tabulation of XSB cannot be used to discover an infinite loop of
the metainterpreter, related to an infinite set of d-trees (the details are explained later).
Thus, tabulation for this purpose is implemented by the metainterpreter.

Each predicate of a transformed program has three additional arguments (in contrast
to one extra argument in the case without negation outlined above). The first is a table
for tabulating recursive calls of the metainterpreter, the second is the resulting conjunc-
tion of constraints and the third indicates whether the tree under construction is a t-tree
or a tu-tree.

A query interface to the transformed program is shown in Listing 1.5. The predicate
hgoal/2 executes a given goal G, with the additional arguments being an empty table,
a variable to carry the resulting constraint, and a mark t indicating that a (branch of a)
t-tree is to be built. As a result it provides an instance of G and the obtained constraint.
This is a simple interface, producing the answers for G one by one. To obtain the dis-
junction of all the answers for a ground goal G, we have to augment it with additional
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Listing 1.5. Query interface

h g o a l (G, Cons t ) :−
% Append e x t r a ar gumen t s . S t a r t w i t h an empty t a b l e and a t−t r e e .
G = . . Lis tG , append ( Lis tG , [ [ ] , Cons t , t ] , L i s t G o a l ) , Goal = . . L i s t G o a l ,
% E x e c u t e t h e goa l w i t h t h e t r a n s f o r m e d program .
Goal .

arguments, as in Listing 1.5 and construct a t-tree, as described below. We do not here
discuss how to obtain a disjunction of all the answers for a non-ground goal.

The program transformation is illustrated in Listing 1.6 by a Prolog program ob-
tained from the example hybrid program of Listing 1.1. As long as negative literals
are not involved, the transformation is similar to the one described previously; just two
more arguments are added to each predicate. Negative rule literals are translated ac-
cording to the semantics of Section 2, a tree is being built for the goal under negation.
The kind of tree built is tu if the kind of the current tree is t, and vice versa. If the con-
struction of the tree fails then the current computation fails if we are within a t-tree, and
continues without changing the constraints if we are within a tu-tree1. If the tree is suc-
cessfully constructed then a disjunction Const of constraints is obtained. The existential
quantification of the disjunction is negated and the result is added to the accumulated
constraints.

Listing 1.6. A transformed hybrid program

win (X, Tbl , Var_T0 , Mode ) :−
move (X, Y, Tbl , Var_T1 , Mode ) ,
swapmode ( Mode , Mode1 ) , % Change t i n t o tu , and t u i n t o t
( t r e e ( win (Y, Tbl , _ , Mode1 ) , Cons t ) % C o n s t r u c t new d e r i v a t i o n t r e e .
−> n e g a t e C o n s t r a i n t D i s j ( Cons t , ConstNeg ) ,

append ( Var_T1 , ConstNeg , Var_T0 )
;
Mode = t u −> Var_T0 = Var_T1 % When t h e t r e e n o t c o n s t r u c t e d .

) .

move ( g__e , g__f , _ , [ g__Europe ( g__f ) ] , _ ) .
move ( g__c , g__f , _ , [ g__ComplFinland ( g__f ) ] , _ ) .
move ( g__b , g__a , _ , [ ] , _ ) .
move ( g__a , g__b , _ , [ ] , _ ) .
move ( g__a , g__c , _ , [ ] , _ ) .
move ( g__c , g__d , _ , [ ] , _ ) .
move ( g__d , g__e , _ , [ ] , _ ) .

In order to perform different actions depending on success or failure of construction
of a tree, the tree constructing predicate has to appear as the first argument of ->. Alter-
natively, some other programming construct eventually related to cut (!) has to be used.
In all such cases XSB Prolog refuses to tabulate such predicates. This is why we have
to take care about discovering attempts to construct an infinite set of trees.

The main predicate of the metainterpreter constructing t- and tu-trees for ground
goals is tree/2 (Listing 1.7). It takes a ground atomic goal Goal and a variable to be
unified with (disjunction of conjunctive) constraints resulting from the constructed tree
for Goal wrt. the transformed program. The last argument of Goal tells which kind of

1 This is case 2a of the operational semantics of Section 2.
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tree is to be constructed. The tree is constructed and the constraints collected by the
built-in predicate findall/3.

Listing 1.7. Metainterpreter, collecting the successful leaves of trees

t r e e ( Goal , Cons t ) :−
groundGoal ( Goal ) , % Check f o r no f l o u n d e r i n g
g e t T a b l e ( Goal , Table , Goa lWi thou tT ab le ) ,
( i n T a b l e ( Goa lWi thou tT ab le , T ab le )
−> f a i l % R e c u r s i o n t h r o u g h n e g a t i o n
;

addToTable ( Table , Goa lWi thou tT ab le , T ab le2 ) ,
i n s e r t T a b l e ( Goa lWi thou tT ab le , Table2 , Goal2 ) ,
g e t _ c o n s t r a i n t _ v a r ( Goal2 , CArg ) , % Argument f o r f i n d a l l
f i n d a l l ( CArg , Goal2 , Cons t ) % C o n s t r u c t d e r i v a t i o n t r e e

) .

Additionally, tree/2 performs tabulation to discover whether the current invocation
of tree/2 has occurred previously. The first of the extra arguments of the goal contains
a table of all goals for which tree/2 has been invoked so far. If the current goal is
found in the table it signifies infinite recursion of tree/2. In such a case the attempt to
construct a tree should be abandoned. Otherwise, the goal has to be remembered and
added to the table. The predicate getTable/3 extracts the table argument from a given
goal. The predicate inTable/2 checks if a goal occurs in a table and addToTable/3
adds a goal to a table. The predicate insertTable/3 performs the reverse task to that
of getTable/3, by adding a table argument to a goal lacking it.

The predicate groundGoal/1 checks whether or not the root of the tree to be con-
structed is ground. It checks groundness of the original arguments of the goal, i.e. not
those added in the program transformation. Predicate get_constraint_var/2 gets the
constraint argument of the goal (which is a variable when get_constraint_var/2 is
used). Thus, findall/3 can collect the values of the constraint argument of the suc-
cesses of the goal.

Our description above does not discuss when the constraints should be checked for
satisfiability. This is a matter of implementation strategy. Our first choice is to check
satisfiability of the obtained disjunction of the constraints from the leaves of a tree. In
such a case, a satisfiability check is to be added at the end of the clause for tree/2
(Listing 1.7). (If predicate hgoal/2 is used at the top-level to produce answers one
by one, then checking satisfiability of Const should be added at the end of the clause
for hgoal/2, Listing 1.5.) During construction of a tree constraints are only collected.
Unsatisfiability of the constraints collected so far would make it possible to prune the
search space. However, checking this would require increased communication with the
ontology reasoner.

The obtained constraints may be quite complicated, in particular they may con-
tain quantifiers. Section 3.4 of [2] presents conditions under which the constraints are
ground.

We are interested in the disjunction of the constraints of tree leaves. Thus, if some
of these constraints, existentially quantified, is a logical consequence of the ontology
then computing the remaining part of the tree is not necessary. Similarly, if the existen-
tial quantification of the disjunction of the constraints obtained up to now is a logical
consequence of the ontology then construction of the tree may be abandoned.
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3.3 Prototype Implementation

Our prototype implements a controlling system for coupling the involved reasoners
to allow querying of hybrid programs. An overview of the architecture of the system is
shown in Figure 1. The integrated reasoners are the XSB Prolog engine for handling the
rule component and an ontology reasoner (e.g. RacerPro) for handling the ontological
constraints in the hybrid program.

Fig. 1. Hybrid reasoning architecture overview

It is important to make the connection between the Prolog metainterpreter presented
in Section 3.2 and the ontology query subsystem shown in Figure 1 for communicat-
ing with DL reasoners when verifying constraints. As discussed in Section 3.3, one
can employ different computational strategies wrt. verifying constraints. Towards this
goal one should augment the metainterpreter, in particular the predicates hgoal/2 and
tree/2, with calls to the ontology query subsystem. Augmenting the prototype with
such abilities is part of ongoing work.

We are currently working on finalizing the above presented implementation and re-
leasing it as a usable, web-accessible, prototype.

4 Related Work and Conclusions

The paper presents an architecture and implementation techniques for a hybrid reason-
ing system for hybrid programs, integrating normal clauses and ontologies specified in
Description Logics. The described prototype uses XSB Prolog both for rule reasoning
and for controlling communication with RacerPro. The query answering techniques for
hybrid rules implemented in this prototype are sound wrt. the declarative semantics,
extending the well-founded semantics of normal programs, as discussed in a separate
paper [2].
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The problem of hybrid integration of rules and ontologies has recently been ad-
dressed by many authors (see e.g. [3,7,6,4] and references therein). None of them are
based on well-founded semantics, save [4]. However, in the declarative semantics of [4]
the truth value of a rule wrt. an interpretation depends on dl-queries in the rule being
logical consequences of the respective ontologies. This makes the semantics incom-
patible with the standard semantics of the first order logic. For example consider two
dl-queries Q1,Q2 such that in each model of the ontology at least one of them is true,
but none of them is a logical consequence of the ontology. Add the rules p ← Q1 and
p ← Q2, which can be seen as axioms in FOL. Then p is a logical consequence of the
ontology and rules combined, but will not follow from the declarative semantics of [4].
In contrast, our approach is compatible with FOL. For achieving this our operational
semantics requires collection of constraints which makes possible reasoning by cases.

In the continuation of the presented work we plan:

– to perform experimental evaluation of the prototype on examples referring to large
ontologies.

– to experiment with alternative constraint solving strategies; in particular reasoning
by cases necessary in our example may not be needed in some applications. In
these cases there will be no need in construction and answering of disjunctive DL
queries.

– to experiment with hybrid programs based on normal programs rather than on Dat-
alog, using non-nullary term constructors for data structuring.
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Abstract. This paper presents an extension to the Semantic Web Rule
Language and a methodology to enable advanced mathematical support
in SWRL rules. This solution separates mathematical and problem se-
mantics allowing the inclusion of integration, differentiation and other
operations not built-in to SWRL. Using this approach, it is possible to
create rules to cope with complex scenarios that include mathematical
relationships and formulas that exceed the SWRL capabilities.

1 Introduction

Current Semantic Web languages provide a way to represent knowledge formally
and exchange information. Some of these languages introduce Horn-like rules or
First-order-logic support, so they enable declarative programming. One example
is the Semantic Web Rule Language (SWRL) [2].

Developing complex systems will require the use of mathematical functions
that are not currently supported in the Semantic Web languages. An example can
be the implementation of real-time systems for emergency care units or vehicular
control. Semantic Web languages do not provide the tools to cope with these
scenarios. They usually include some mathematical built-ins to perform simple
operations such as addition or subtraction. However, they are not designed to
work with complex formulas.

This paper presents a methodology and a practical approach to add the re-
quired functionality to SWRL. The strategy is based on the separation between
mathematical and problem semantics.

2 SWRL and Mathematical Semantics in the Web

The OWL Web Ontology Language [4] provides the base for knowledge represen-
tation by means of the definition of classes, properties and individuals. SWRL
� Now at University of Southampton IT Innovation Centre, UK.
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is based on OWL, adding high level abstract syntax to support Horn-like rules
that can be used to deduce new facts in the knowledge-base. SWRL built-ins are
used to perform specific mathematical computation (e.g. add, subtract, round,
sin), comparisons (e.g. equal) and operations on different types of data value
(e.g. strings).

Mathematical built-ins are useful, but the problem arises when the relation-
ship to be presented implies unsupported operators (e.g summations). An exam-
ple could be the calculation of a cumulative value of a Gaussian distribution as
it requires the use of integration operators. There is also a problem of clarity due
to mixing mathematical and problem semantics in the same rule. Furthermore,
when the formula implies a high number of operations, the memory requirements
for the reasoner increase as it has to store many temporary variables. The reason
is that SWRL built-ins were designed as predicates. However, the capabilities of
the existing reasoners allow us to use the built-ins as functions.

It becomes necessary to find a different way to represent mathematical formu-
las in SWRL. One of the main efforts to represent mathematical equations and
formulas on the Web is OpenMath [1]. OpenMath is formed by a set of tags and
content dictionaries. The tags allow the definition of primitive types, variables,
symbols (e.g. π) and operators. Content dictionaries (CD) group mathematical
symbols and define their semantics including arithmetic functions, transcendental
functions, polynomials, differentiation and integration.

3 Working with SWRL and OpenMath

In order to overcome the issues pointed out in Section 2, we propose a combina-
tion of SWRL and OpenMath.

The solution uses SWRL to select the information to be included in the for-
mulas and the formula itself. OpenMath is used to represent the formula and
pass the information to a mathematical software tool. It is necessary to perform
a binding between both languages in order to relate the information located by
SWRL and the variables included in the OpenMath expression.

A new class is created called Formula with a datatype property (hasOMEx-
pression) to hold the OpenMath expression in XML. Additionally, a new built-in
(mathext) is defined in a new namespace (swrlbext). This built-in has a mini-
mum of three arguments. The first one is the result of the formula. The second
one is the OpenMath formula. The rest of the arguments are the values that
correspond to the variables in the formula. The reason for having a Formula in-
stance rather than just passing the OpenMath expression to mathext is to allow
reuse of the formula.

The classes, rules and formulas are written using an OWL editor. The formula,
written in OpenMath, is set as the value of the hasOMExpression property of
an instance of the Formula class.

When the reasoner uses a rule (Figure 1), it selects the appropriate val-
ues, placing them as values of the variables used in the rule. When it finds
a customized SWRL built-in, it calls a built-in handler function that delegates
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Fig. 1. SWRL-OpenMath Architecture

mathematical computation to programs specially prepared for it. It links to a
mathematical application through existing tools (OpenMath and syntax transla-
tion APIs), gets the result and returns it to the reasoner. The reasoner resumes
the rule execution and generates new statements depending on the values com-
puted using the formula. The proposed architecture has been implemented using
Bossam [3] and Mathematica[5].

4 Conclusions

This paper has identified the limitations of Semantic Web Languages to cope
with complex scenarios that require the use of advanced mathematical expres-
sions and conditions to deduce new facts. A new practical approach and architec-
ture has been presented to add the required functionality to SWRL. The strategy
is based on the separation between mathematical (OpenMath) and problem se-
mantics (SWRL).
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Abstract. For the foreseeable future, most data will continue to be stored in 
relational databases. To work with these data in ontology-based applications, 
tools and techniques that bridge the two models are required. Mapping all 
relational data to ontology instances is often not practical so dynamic data 
access approaches are typically employed, though these approaches can still 
suffer from scalability problems. The use of rules with these systems presents 
an opportunity to employ optimization techniques that can significantly reduce 
the amount of data transferred from databases. To illustrate this premise, we 
have developed tools that allow direct access to relational data from OWL 
applications. We express these data requirements by using extensions to OWL's 
rule language SWRL. A variety of optimization techniques ensure that this 
process is efficient and scales to large data sets.  

1   Introduction 

As ontology development tools have been increasingly used to address real-world 
problems, scalability has become an important topic [4]. Initially, ontologies were 
stored in flat files and fully loaded into application memory when in use. This 
approach worked well for small ontologies, but it did not scale well. One of the first 
approaches to this problem was to store ontology information directly in relational 
databases. However, this approach generally used application-specific storage 
formats, and ontologies stored this way could not be used easily by other tools. More 
recent approaches have focused on triple stores [http://simile.mit.edu/reports/stores/], 
which use native representation of RDF triples to store ontologies. Triple stores are 
analogous to relational database management systems and provide efficient storage 
and retrieval of ontology information. RDF query languages like RDQL 
[http://www.w3.org/Submission/RDQL/] and SPARQL [http://www.w3.org/TR/rdf-
sparql-query/] can provide SQL-like query functionality on triple stores. OWL 
ontologies can be stored in triple-store back ends without loss of semantics. 

One approach to the problem would be to statically map a relational database to a 
triple-store. This approach suffers from several shortcomings, however. First, there is an 
issue of data duplication. Furthermore, there are questions about how frequently to 
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update triple stores to reflect changes in associated relational database. Knowledge-
driven applications requiring up-to-date information require frequent synchronization, 
which may be cumbersome and problematic. And, of course, supporting knowledge-
driven updates, means that synchronization issues arise in the reverse direction.  

Ideally, knowledge-driven data requests would retrieve data from live relational 
databases. This approach requires automatic or semi-automatic dynamic mapping 
between relational databases and triple-based formats. It also requires a software layer 
to rewrite knowledge-level queries into SQL-queries for retrieving required data from 
a database. Further reasoning with retrieved knowledge could be performed in 
memory. If updates were allowed, the reverse transformation would also be 
supported. Many recent systems have implemented this approach or variants of it 
[6,7]. 

2   Implementation 

To support knowledge-driven querying of relational databases, we have developed 
tools to map data dynamically from relational databases to concepts described in an 
OWL ontology. Our tools make extensive use of OWL’s rule language SWRL [2]. 
SWRL is used both to specify the OWL-to-relational mapping and to provide a 
knowledge-level query interface to the system.  

This work extends ontology development technologies that we have been 
producing over the past decade. In particular, we have used Protégé-OWL [5], an 
open source framework that provides a suite of tools for constructing OWL ontologies 
and knowledge-based applications, and an associated development environment 
called SWRLTab for working with SWRL rules [1]. SWRLTab supports the editing 
and execution of SWRL rules. It also supports the incorporation of user-defined 
libraries of methods—called built-ins—that can be used in rules. Several standard 
libraries are provided, including implementations for the core SWRL built-ins defined 
by the SWRL submission [2], a temporal library that can be used to reason with 
temporal information in SWRL rules, and libraries that allow Abox and Tbox 
querying. A query library is also provided, and can be used to effectively turn SWRL 
into a query language.  

We used the query extensions provided by SWRLTab to develop a set of tools that 
can be used to perform knowledge-level queries on data stored in a relational 
database. We have devised an array of optimization strategies to improve the 
performance of the underlying relational-to-ontology mapping process. Our primary 
goal is to offload as much work as possible to the underlying RDBMS by exploiting 
knowledge of SWRL rules as well as additional information provided by a rule base 
author. A secondary goal is to reduce the amount of data retrieved from databases 
during rule processing.   

Our optimization strategies include: (1) adding annotations to built-ins to describe 
the nature of the operations they perform and then using them to rewrite the 
underlying data retrieval SQL queries to exclude unnecessary data; (2) annotating 
individual SWRL rules to describe their major ‘axis of evaluation’ and using these 
annotated rules to exclude as much unneeded data as possible; (3) using the same 
annotation technique at the rule base level to control overall relational data access 
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during rule evaluation; (4) making rule engine optimizations by providing a late 
binding mechanism for mapped data so that information is retrieved only when 
needed; and finally, (5) using standard  database optimization techniques, which are 
then enhanced by a knowledge-driven process to create database views based on the 
expected access pattern to data.  

3   Conclusions 

We have implemented an efficient dynamic OWL-to-relational mapping method and 
used SWRL to provide a high-level language that uses these mappings. An important 
benefit of our approach is that it allows knowledge-driven applications to work 
directly with relational data. We believe that SWRL provides a rich high-level 
language to specify the data requirements of these applications. In conjunction with 
relational-to-OWL mapping technology, it can also serve as an efficient means of 
dealing with legacy relational data. 
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Abstract. We describe a procedural, query answering-oriented seman-
tics for weighted fuzzy logic programs. The computation of the semantics
combines resolution with tabling methodologies and is done by construct-
ing and evaluating an appropriate resolution graph.

1 Introduction

The handling of uncertainty is an important requirement for logic programming
languages and has influenced the activities of W3C and RuleML (URW3 In-
cubator Group and Fuzzy RuleML Technical Group). Fuzzy logic is a way to
provide logic programs with the ability to reason under uncertainty (e.g. [5,3]).
Weighted fuzzy logic programs (wflps) [1] further extend fuzzy logic programs by
introducing weights that allow each atom in a rule to have a different significance.

In this paper we describe a procedural semantics for wflps based on resolution
and tabling [4]. A resolution-based query answering procedure for ground impli-
cation based programs is desribed in [3] and a tabling-based one for residuated
logic programs in [2]. The latter is developed for programs that combine the sev-
eral truth values inferred for the same atom using the max s-norm only. Wflps
allow the use of any s-norm instead. We also do not require ground programs.

2 Weighted Fuzzy Logic Programs

A weighted fuzzy logic program P is a finite set of safe fuzzy rules of the form
w : B ← (w1; A1), . . . , (wn; An), where B and Ai are fuzzy atoms, the weight
w ∈ [0, 1] is the rule confidence and the weight wi ∈ [0, 1] the significance of
Ai. The rule body is evaluated using a weighted conjunction operator (wco)
∧̃[w1,...,wn](a1, . . . , an) [1]. Since there is no negation, the semantics of P are
defined similarly to logic programming. The Herbrand base BP is as in logic
programs and an interpretation I is a mapping BP → [0, 1]. We denote a ground

� A. Chortaras is on a scholarship from the Alexander S. Onassis Public Benefit Foun-
dation. This work was partially funded by the X-Media project, sponsored by the
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atom by A and by AI its value in I. An atom A is subsumed by atom B (A � B)
if there is a substitution θ such that A = Bθ. The inference base RA of atom
A is the set of all the rules whose head unifies with A by a mgu θ. The ground
inference base RA of ground atom A consists of the ground instances of RA.
Given a wco ∧̃, a t-norm T and an s-norm S, I is a model of P if for all B ∈ BP

S
({

T (w, ∧̃[w1,...,wn](A
I
1, . . . , A

I
n))

}
w:B←(w1;A1),...,(wn;An)∈RB

)
≤ BI (1)

If V (BI) is the lhs of (1), the consequence operator FTP , defined by the
equations BFTP(I) = V (BI), has a least fixpoint FT ↑ωP equal to the minimal
model FMP of P , which, if ∧̃, T , S are continuous, is obtained by a process of ω
iterative applications of FTP starting from the interpretation I⊥ that maps all
atoms to 0. If FTP↑ω is unreachable in less than ω steps, only an approximation
of it is computable: given an interpretation distance metric, an approximation
of FMP by FTP↑k at any accuracy level is computable in k < ω steps (cf. [5]).

3 Procedural Semantics

Given a wflp P and an atom A, the procedural semantics answer the query ?A
by effectively computing all the ground atoms A � A that have a non zero value
in FMP . Given the preceding discussion, it may be possible to answer a query
only approximatively: if A = Aθ, we say that (θ, v) is an ε-correct answer to ?A
for some ε > 0 if AFMP < v + ε and a correct answer if AFMP = v.

In logic programming, query answering is performed by SLD-resolution, a
process that tries to find a sequence of substitutions θ = θ1 . . . θk along a path of
rules by which a ground atom A = Aθ subsumed by the query can be inferred. If
such a sequence is found for A, it is the correct answer for A and any alternative
way to obtain θ along another path offers no additional information. This is
not the case with wflps: according to (1) all the paths by which A may be
inferred have to be taken into account. As a result, a resolution process for a
fuzzy programming language has in general to consider all the alternative ways
of inferencing the ground atoms subsumed by the query (cf. [3]).

For this reason, we propose a query answering algorithm for wlfps that relies
on the construction of a resolution graph G that models in a directed graph all
the dependencies between the query and the program rules. The graph has a
skeleton G�, which is a tree that encodes the non recursive dependencies. The
skeleton is augmented into a cyclic graph if the program contains recursive rules.
The skeleton is closely related with the disjunctive derivation trees of [3].

Given a wflp P and a query ?A, G is constructed by creating the root of G�,
which corresponds to the initial goal A, and then by adding step by step new
edges and nodes by computing the inference base of each intermediate goal. The
nodes are either atom or rule nodes. An atom node is labeled by an atom and a
rule node by a rule of P , possibly with some of its variables bound to constants.
When an atom node α with label B is added to G, it constitutes a new goal, so
it is given as children a new rule node ρ for each rule R in the inference base
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RB. If RB = � then α is a leaf of G�. The connecting edges are marked by the
confidence of R and the mgu θ for which the head of Rθ equals Bθ. The label of ρ
is Rθ. In its turn, a rule node ρ with label w : B ← (w1; A1), . . . , (wn; An) is given
n children atom nodes. The label of the i-th child is Ai. The edge connecting
ρ with its i-th child is marked by the weight wi. During the construction, if an
atom node α is added in G whose label is subsumed through a substitution θ
by the label of an already existing in G atom node α′, α is connected with a
subsuming edge, marked with θ, with α′, and α is given no rule node children
and becomes a leaf of G�. Each atom node with label B maintains also a set of
ground substitution-value pairs (θ, v) which store the truth values v (if v > 0)
that are computed during the evaluation of G for the ground atoms Bθ.

Given an initial interpretation I to initialize the leaves, the evaluation of G is
performed bottom-up, moving from the leaves of G� towards root(G�). During
this process, the substitution-value pairs of each atom node are computed by
considering the already completed computations of its children. A rule node with
n children, for each ground instance Rθ of its label, computes a multiset with the
values ∧̃[w1,...,wn](a1, . . . , an) where wi is the weight of the i-th outcoming edge
and ai the value computed by the respective atom node child for a substitution
compatible with θ. A non leaf atom node, for each ground instance Bθ of its
label, computes the pair (θ, S({T (wi, ai)}k

i=1)) where wi is an outcoming edge
weight and ai the value computed by the respective rule node child for a rule
instance with head Bθ. A leaf atom with a subsuming outcoming edge obtains its
substitution-value pairs directly from the linked atom node. If G is acyclic this
process terminates once root(G�) is reached. Otherwise, an iterative evaluation of
G taking each time as initial interpretation the results of the previous evaluation
of G may be necessary in order to exactly or approximately answer ?A. It can
be shown that the process is sound and complete, so that for any substitution
θ such that A = Aθ there is a resolution graph G and an iterative valuation of
it starting from I⊥, such that (θ, v) is a correct or an ε-correct answer for any
ε > 0 to ?A, where (θ, v) is the substitution-value pair held in root(G�) for θ.

The above-described construction and evaluation process of G may be subject
to optimizations that exploit the particular weight values and structure of P .
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Abstract. This work presents a visualization algorithm for defeasible logic rule 
bases as well as a software tool that applies this algorithm, according to which, 
a directed graph is produced that represents the rule base. The graph features 
distinct node types for rules and atomic formulas and distinct connection types 
for the various rule types of defeasible logic. 

1   Introduction 

Logic and proofs posses a key role in the acceptance of the Semantic Web on behalf 
of the users. Defeasible reasoning [3] represents a rule-based approach to reasoning 
with incomplete, changing and conflicting information. Nevertheless, it is based on 
solid mathematical formulations and is, thus, not fully comprehensible by users, who 
often need graphical trace and explanation mechanisms for the derived conclusions. 

This paper presents a visualization algorithm for defeasible logic rule bases and a 
software tool that applies this algorithm. For the representation of the rule base, di-
rected graphs are applied that feature distinct node and connection types. The tool is 
called dl-RuleViz and is implemented as part of VDR-DEVICE [1], an environment for 
modeling and deploying defeasible logic rule bases on top of RDF ontologies. 

2   Visualizing a Defeasible Logic Rule Base 

The full theoretical approach, regarding the graphical representation of defeasible rea-
soning elements was discussed in a previous work of ours [2]. For every class in the 
rule base, a class box with the same name is constructed. Class boxes are containers, 
which are dynamically populated with one or more class patterns. Class patterns ex-
press conditions on filtered subsets of instances of the specific class and are populated 
with one or more slot patterns. Slot patterns represent conditions on slots (or class 
properties) and they consist of a slot name and, optionally, a variable and a list of 
value constraints. The variable is used for unifying the slot value, with the latter  
having to satisfy the list of constraints.  
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For the placement of each element in the graph, an algorithm (Fig. 1) for the visu-
alization of the defeasible logic rule base is proposed that takes advantage of common 
rule stratification techniques. Unlike the latter, however, that focus on computing the 
minimal model of a rule set, our algorithm aims at the optimal visualization outcome. 

 str:=1 
foreach cb∈CBb do stratum(cb):=str 
while |RS|≠0 do 

RuleTemp:=∅ 
str:=str+1 
foreach R∈RS do 

if  ((∀p∈premises(R) → stratum(class(p))<str) ∧ 
(∃p'∈premises(R) ∧ stratum(class(p'))=str-1)) 

then stratum(R):=str, RS:=RS-{R}, RuleTemp:=RuleTemp ∪{R} 
foreach R∈RuleTemp do 

foreach p∈premises(R) do 
if stratum(class(p))=str-1 then Type:=plain else Type:=expandable,  

in-arrow(R):=in-arrow(R)∪{<p,Type>}, 
out-arrow(p):=out-arrow(p)∪{<R,Type>}, 

str:=str+1 
CbTemp:=∅ 
foreach R∈RuleTemp do  

if unknown(stratum(class(conclusion(R))))  
then stratum(class(conclusion(R))):=str, CbTemp:=CbTemp∪{class(conclusion(R))}  

foreach R∈RuleTemp do 
if type(R)=strictrule then Type:= strict 
else if type(R)=defeasible then Type:=defeasible 
else Type:=defeater, 
if class(conclusion(R))∈CbTemp then Orient:=plain else Orient:=dotted, 
out-arrow(R):=out-arrow(R)∪{<conclusion(R),Orient,Type>}, 
in-arrow(class(conclusion(R))):=in-arrow(conclusion(R))∪{<R,Orient,Type>}  

Fig. 1. The rule stratification algorithm 

The algorithm gives a left-to-right orientation to the flow of information in the 
graph by “stratifying” the graph elements, i.e. by calculating the optimal stratum, 
where each graph element has to be placed. The following steps can be distinguished: 

1. All base class boxes are placed in stratum #1. 
2. The algorithm enters a loop, consecutively assigning strata to rule circles and de-

rived class boxes, incrementing each time the stratum counter by 1. 
a. A rule circle is assigned to a stratum, if all its premises belong to previous strata, 

with at least one of them belonging to the immediately previous stratum. 
b. A class box is assigned to a stratum, if it contains the conclusions of rules in the 

immediately previous stratum. 

When a conclusion of a rule serves as a premise for another rule in a previous stra-
tum, the conclusion is not drawn again and the arrow connecting the rule with the 
conclusion is not drawn backwards. Instead, a “dotted” arrow is drawn, commencing 
from the rule circle and ending in three dots “…”, to reduce complexity. By clicking 
on the arrow, a pop-up window shows the rule isolated in its completeness. 

Only the arcs that connect two consecutive graph elements are drawn by default. 
When the stratum difference between a class pattern and a rule circle is greater than 1, 
the arrow that connects them is “expandable”. To prevent graph cluttering, expand-
able arrows are drawn only at the user’s request. 

For example, suppose that we have the following rule base: 

r1: novel(X) → book(X) 
r2: book(X) ⇒ hardcover(X)  r3: novel(X) ⇒ ¬hardcover(X) 
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r4: novel(X),collectible(X,“yes”) ⇒ rare(X) 
r5: novel(X),author(X,“Asimov”),price(X,Y),Y>18 ⇒ hardcover(X) 

 

 

Fig. 2. Implementation of the visualization algorithm by dl-RuleViz 

After applying the algorithm, it comes up that four strata (or columns) are needed 
to display all the graph elements. The resulting graph (Fig. 2), produced by dl-
RuleViz, is compliant with the algorithm presented. The pop-up window displays the 
premises and conclusion of rule r2. 

3   Future Work 

Potential improvements of dl-RuleViz and the visualization algorithm include enhanc-
ing the derived graph with negation-as-failure and variable unification, for simplify-
ing the display of multiple unifiable class patterns. Expressive visualization of a de-
feasible logic rule base can then lead to proof explanations. By adding visual rule 
execution tracing, proof visualization and validation to the dl-RuleViz module, we 
can delve deeper into the Proof layer of the Semantic Web architecture, implementing 
facilities that would increase the trust of users towards the Semantic Web. 
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Abstract. We report on eÆciency evaluations concerning two di�erent
approaches to using logic programming for OWL [1] reasoning and show, how
the two approaches can be combined.

Introduction

Scalability of reasoning remains one of the major obstacles in leveraging the full power
of the Web Ontology Language OWL [1] for practical applications. Among the many
possible approaches to address scalability, one of them concerns the use of logic pro-
gramming for this purpose. It was recently shown that reasoning in Horn-���� [2,3,4]
can be realised by invoking Prolog systems on the output of the KAON2-transformations
[5]. Still, performance experiments had not been reported yet.

An entirely di�erent e�ort to leveraging logic programming for OWL reasoning rests
on the idea of approximate reasoning, by allowing some incorrect inferences in order
to speed up the reasoning. First experiments with an implementation – called S������
[6], have been encouraging.

In this paper, we report on evaluations concerning the feasibility of the two men-
tioned approaches. We performed corresponding experiments using the ontologies
GALEN, DOLCE, WINE and SEMINTEC.

The KAON2-Transformation

Reasoning with KAON2 is based on special-purpose algorithms which have been de-
signed for dealing with large ABoxes, detailed in [2]. The KAON2 approach trans-
forms OWL DL ontologies to disjunctive datalog, and applies established algorithms
for dealing with this formalism. The program returned by the transformation algorithm
is in general not logically equivalent to the input TBox, but equisatisfiable, which is
suÆcient for most reasoning problems.
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Convenient access to the KAON2 transformation algorithm is given by means of the
KAON2 OWL Tool1 dlpconvert,2 which can also produce F-Logic serialisations which
can be used with F-Logic engines like OntoBroker.

Approximate OWL-Reasoning with Screech

S������ uses a modified notion of split program [7] to deal with disjunctive datalog: for
any rule H1 � � � � �Hm � A1� � � � � Ak� from the output of the KAON2 transformation al-
gorithm, the derived split rules are defined as: H1 � A1� � � � � Ak � � � Hm � A1� � � � � Ak�

The split program P� of a given program P, obtained by splitting all its rules, is com-
plete but may be unsound wrt. instance retrieval tasks. Note that the data complexity for
this is polynomial since P� is (non-disjunctive) datalog. A prototype implementation of
our approach is available as the S������ OWL approximate reasoner.3

Experiments and Evaluation

An approximate reasoning procedure needs to be evaluated on real data from practical
applications. So we evaluated the following popular publicly available ontologies: the
GALEN Upper Ontology,4 DOLCE,5 the WINE ontology,6 and SEMINTEC.7 For each
of these ontologies, we measured the time and precision for retrieving the extensions
of all named classes. The results of our evaluations are summarized in the table below,
where also the fraction of disjunctive rules in the KAON2 output can be found for each
ontology.

ontology time saved correct instances correct class extensions disjunctive rules
GALEN 38.0% 91.8% 138�175 54�1449
DOLCE 29.1% 62.1% 93�123 47�1797
WINE 34.5% 95.8% 131�140 26�559
SEMINTEC 67.3% 100% 59�59 0�221

The Data-Tractable OWL Fragment Horn-����

Horn-���� is defined as the fragment of OWL DL for which the disjunctive datalog
program obtained from the KAON2 transformation is in fact non-disjunctive, i.e. Horn
[2,3]. A direct definition using a grammar is due to [4]. Horn-����’s data complexity
is polynomial, qualifying it as a tractable description logic [8]. Its combined complexity
is still exponential [4].

1 �������
���

���
��
���	�
���
2 ��������
���������������������	��	����������
��	��
3 http:��logic.aifb.uni-karlsruhe.de�screech
4 http:��www.cs.man.ac.uk��rector�ontologies�simple-top-bio�
5 ������������
�������������������
6 ��������������	���	�����
����	��� ��	���	���������!"��#$%
7 �������������������
&������������'�
���&��	����	�����
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In [5] was shown that using o�-the shelf Prolog implementations for reasoning with
Horn-���� after the KAON2-transformation is possible in principle by using Prolog
with tabling, as implemented e.g. in the XSB system.

It turns out, however, that tabling is too expensive for our test ontologies. For none
of our test ontologies, XSB with tabling was able to produce answers to the queries,
which shows that it cannot be used naively on realistic data.

Using OntoBroker 5.0 build 690, the results were similar. OntoBroker could be used
with our test ontologies only with bottom-up reasoning, which is the least eÆcient of
the reasoning strategies. Consequently, performance was much worse if compared with
S������ on the KAON2 datalog engine, with about factor 20 for SEMINTEC and factor
100 for WINE. For the GALEN ontology, however, OntoBroker performed drastically
better than the KAON2 datalog engine: querying for the extensions of all classes, on
average, OntoBroker performed better than the KAON2 datalog engine on the screeched
version, by a factor of 3.9. In this experiment, the speedup by S������ compared to the
unscreeched version on KAON2 was at a factor of 11.4. Overall, using a combination
of S������ and OntoBroker we obtained a speedup of factor 44.7 compared to using
KAON2 on the unscreeched version.

Discussion

The two approaches which we presented can be combined in a straightforward manner,
namely by first screeching a given TBox and then performing the subsequent reasoning
on a logic programming engine. The results presented for the GALEN ontology indicate
that a significant speedup is possible, in this case by an overall factor of 44.7 (i.e. 97.8%
time saved), while 91.8% of the retrieved instances are correct.

The S������ part of the performance improvement is stable over all tested ontolo-
gies. The gain varied between 29.1 and 67.3 %, the amount of correctly retrieved in-
stances was above 91.8% for all but one of the ontologies. It is encouraging that the
approach appears to be feasible even for the sophisticated WINE ontology.

Concerning the use of logic programming systems for improving Horn-���� per-
formance, the results were mostly discouraging, because a naive application of such
systems was not possible. However, the drastic speed-up of factor 11.4 (i.e. 91.2% time
saved) compared to S������ obtained with OntoBroker in bottom-up setting on the
GALEN ontology indicates that a special-purpose logic programming system should
frequently be able to outperform KAON2 on Horn-����. But specialised implemen-
tations may be needed for this purpose as the o�-the-shelf systems are currently not
applicable in general.
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1 Introduction

Schema mappings play a central role in both data integration and data
exchange, and are understood as high-level specifications describing the rela-
tionships between data schemas. Based on these specifications, data structured
under a source schema can be transformed into data structured under a target
schema. During the transformation some structural constraints, both context-
free (the structure) and contextual (e.g. keys and value dependencies) should be
taken into account. In this work, we present a formalism for schema mapping
specification taking into account key constraints and value dependencies. The
formalism extends results from [1,2], and our previous work [3,4]. We illustrate
the approach by an example.

2 XML Schema Mappings and Transformations

In data exchange settings, the following second-order source-to-target dependen-
cies (SO STDs) are usually used to express schema mappings [1]:

MS→S′ := ∃f∀x(Φ(x) ∧ χ(x,y) ⇒ Ψ(x,y)), (1)

where: f is a vector of function symbols, x, y are vectors of variables; Φ is
a conjunction of atoms over the source schema S; χ(x,y) is a conjunction of
equalities of the form t = t′ where t and t′ are terms over f , x and y; Ψ is a
conjunction of atoms over the target schema S′; each variable is safe.

In relational data exchange [1], atoms in (1) are restricted to atomic relational
formulas. In the case of XML, so called tree-pattern formulas can be used instead
of atoms. In [2] tree-pattern formulas express mappings between XML schemas.
However, these mappings are restricted only to the structure of the schemas and

� The work was supported in part by the Polish Ministry of Science and Higher Edu-
cation under Grant N516 015 31/1553.
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do not consider any contextual constraints, i.e. ignore the χ(x,y) part of (1), thus
they are restricted to DTD’s only. In this paper we additionally consider such
contextual constraints as keys and key references, which can be specified within
XSD (XML Schema Definition) [5], as well as so-called value dependencies that
can be easily incorporated into XSD by means of annotations. As we discussed
in our previous works [3,4] such features are useful in data integration processes
and should be taken into account for:

– a unique target instance satisfying all imposed constraints can be obtained,
in [4] we proposed a suitable algorithm for that based on Skolem functions;

– some missing data may be inferred while merging data from different sources;
a solution to this problem was discussed in [3].

Let L be a set of labels of a schema S. A tree-pattern formula (TPF) over
L is an expression π conforming to the syntax (l ∈ L, top ∈ L and top is the
outermost label in the schema, x is a string-valued variable):

π ::= /top[E]; E ::= l = x | l[E] | E ∧ E.
A label l in TPF may be followed by a key expression {(P1, ..., Pk)} providing

information about key paths which uniquely identify subtrees rooted in l in any
instance of the schema S (possibly in a context determined by a context path
P ). This corresponds to the key for XML (P, (l, (P1, ..., Pk)), as proposed by
Buneman et al. [6]. A TPF extended with key expressions will be referred to as
a key-pattern formula (KPF). We distinguish among three kinds of schema map-
pings: automappings, correspondences, and transformations. As in (1), function
symbols are quantified existentially, while variables universally.

An automapping describes how an instance of a schema S is transformed onto
an equivalent instance of S satisfying all the key constraints defined in δS :

AS := πS(x) ∧ ψS(x) ⇒ δS(x),

where: πS(x) is a TPF capturing the structure of the schema; ψS(x) is a con-
junction of atoms of the form x = x′ and x = f(x1, ..., xn), where the former
captures a key reference and the latter a value dependence; δS(x) is a KPF.

A correspondence states how patterns in the source schema tree S correspond
to patterns in the target schema tree S′:

MS→S′ := πS(x) ∧ φS,S′(x,y) ⇒ πS′(x,y),

πS(x) and πS′(x,y) are TPFs over S and S′, respectively; φS,S′(x,y) is a con-
junction of atoms of the form x = x′, y = y′ and y = f(x1, ..., xn), i.e. restricts
variable values and defines target variables as functions over source variables.

A transformation describes how data structured under the source schema is
to be transformed into data structured under the target schema preserving keys
in the target. The transformation can be derived automatically based on both
the correspondence MS→S′ from S to S′ and the automapping AS′ over S′:

MS→S′ := πS(x1) ∧ φS,S′(x1,y1) ⇒ πS′(x1,y1)
AS′ := πS′(x2) ∧ ψS′(x2) ⇒ δS′(x2)

TS→S′ := (πS(x1) ∧ φS,S′(x1,y1))[(x1,y1) �→ x2] ∧ ψS′(x2) ⇒ δS′(x2),
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(πS(x1) ∧ φS,S′(x1,y1))[(x1,y1) �→ x2] arises from πS(x1) ∧ φS,S′(x1,y1) by
replacing variables in (x1,y1) with corresponding variables in x2. Replacement
is made according to occurrences of variables within πS′(x1,y1) and πS′(x2).

Example 1. In Fig. 1, there are sample XML trees and XML schema trees repre-
senting bibliographical data. The node labels are as follows: paper (P ) and title (T )
of the paper; author (A), name (N) and university (U) of the author; year (Y ) of
publication the paper P . We can define the following mappings for these schemas:

AS2 := πS2 ∧ ψS2 ⇒ δS2 , or, alternatively, A′S2
:= πS2 ∧ ψS2 ⇒ δ′S2

, where:
πS2(x1, x2, x3, x4) := /S2[A[N = x1 ∧ U = x2 ∧ P [T = x3 ∧ Y = x4]]],
ψS2 := x2 = fU (x1) ∧ x4 = fY (x3),
δS2 := /S2[A{N}[N = x1 ∧ U = x2 ∧ P{T }[T = x3 ∧ Y = x4]]],
δ′S2

:= /S2[A{(N, P/T )}[N = x1 ∧ U = x2 ∧ P{T }[T = x3 ∧ Y = x4]]],
MS1→S2 := πS1(z1, z2, z3) ∧ z4 = fY (z1) ⇒ πS2(z1, z2, z3, z4), where
πS1(z1, z2, z3) := /S1[P [T = z1 ∧ A[N = z2 ∧ U = z3]]],
TS1→S2 := πS1(x3, x1, x2) ∧ x4 = fY (x1) ∧ x2 = fU (x1) ⇒ δS2(x1, x2, x3, x4),
T ′S1→S2

:= πS1(x3, x1, x2) ∧ x4 = fY (x1) ∧ x2 = fU (x1) ⇒ δ′S2
(x1, x2, x3, x4).
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Fig. 1. XML schemas S1, S2, and their instances: I1 of S1, and I2 and I ′
2 of S2;

I2 = TS1→S2(I1), I ′
2 = T ′

S1→S2(I1)
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Abstract. We use situation theory to model context of agents’ actions in 
heterogeneous P2P system of semantic data integration. This formal basis is 
also suitable to cope with information partiality, open-world and non-
monotonic reasoning. Operational semantics of asking and answering queries 
by the agents is presented as a set of context-dependent rules. Situations are 
represented by facts and rules and Prolog-like reasoning mechanisms are used 
in the system. Specification of sample actions is presented. 

Keywords: P2P system, situation theory, context-aware processes, Prolog-like 
computations, operational semantics. 

1   Introduction 

In this paper we consider systems consisted of agents (peers), which manage local 
data and can cooperate with other agents by asking them and answering queries. We 
assume that an agent performs actions with respect to all data and metadata it posses 
(its context or mental state [7]). To cope with data heterogeneity and semantic data 
processing in the system we choose situation theory [3, 4] and Prolog-like inference 
mechanisms. Precisely, (1) we adopt abstract situations as context of agents’ actions, 
(2) we propose a set of rules, which describe evaluation of these actions with respect 
to explicitly shown context and (3) we outline a Prolog specification of some actions 
executed by agents in the semantic data integration system SIX-P2P [2]. 

The most elementary construct in the situation theory is infon – a discrete item of 
information.  If R is an n-place relation and a1,...,an are objects appropriate for the 
respective argument places of R, then a tuple <<R,r1→a1,...,rn→an,p>> with p=+ 
denotes the informational item that a1,...,an are standing in the relation R, and with 
p=– the informational item that a1,...,an are not standing in the relation R. To represent 
partial information one can omit some arguments of R. A real situation s (a limited 
structured part of the world individuated by a cognitive agent) is modeled by an 
abstract situation – the set {σ | s |= σ} of infons, which are true in the situation s. 
Inferences in the situation theory are realized via constraints on situation types. With 
the infon <<S1=>S2,+>>, where => is a relation written in infix style, an agent knows 
that if it is in mental state of type S1 than it is also in state of type S2. In general, any 
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constraint may depend on a set B of background conditions ([S1 => S2] / B) and then 
allows to capture a phenomenon like non-monotonicity in commonsense reasoning.   

Situations and constraints constitute a context in situation theory [1].  

2   Reasoning with Rules over Abstract Situations  

Agents (peers) have unique names. The mental state of the peer p is denoted by p. 
Queries issued by a peer take a form of Prolog-like goals, e.g., the agent p executes 
q*G if it wants the agent q to evaluate the goal G. If the evaluation succeeds, then 
some substitution θ is returned to p (following [5] we denote it as p/p |-θ q*G). The 
evaluation of goals can be described by the following rules, where conclusions hold 
when all premises hold.  

/  | –  p p tr u e∈
                                                  (1) 

/  | –

/  | –

q q G

p p q G
θ

θ ∗
                                                  (2) 

Any agent p with mental state p always can execute the empty goal denoted by true. 
The rule (2) shows what happens when the agent p sends the goal G to the agent q.  

1

1

 |=  ( , , ) ,

/  | – ( , , )
n

n

p R t t

p p R t tθ

θ<< + >>…
…

                                    (3) 

1

1

 |= ( , , ) ,

/  | – ( , , )
n

n

p R t t

p p R t tθ

θ<< − >>
¬
…

…
                                    (4) 

If the agent p “knows” the fact <<R(t1,…,tn)θ, ±>>, than it can execute, respectively,  
goal R(t1,…,tn) or ¬R(t1,…,tn). So, an agent can correctly act in the “open world”.  

( ), : ,  /  | –

/  | –

m gu A H H G p p p G

p p A
δ

γδ

γ γ= ∧ << − + >>∈ ∧
         (5) 

The above rule shows how the agent p executes the goal A when it has the Prolog rule 
H:-G in his mental state. The assignment γ is the most general unifier of A and H. If 
the unifier does not exist, execution of A fails. 
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In the rule (6) a conjunctive query is described. The successful execution of G1 with a 
new substitution θ appears. It is used then in the execution of the goal G2. The rule (7) 
shows how the agent p ought to evaluate the goal G with respect to the constraint  
[Q =>R]. It executes this goal in the new mental state p∪r. 

3   Specification of Sample Actions  

A query in SIX-P2P system may be propagated to partners of each peer inducing a 
cooperative evaluation of the query in the set of possible “knowledge sources”. 

There are two types of agents in the system: peers and brokers. Introduction of 
the Agent consists of registration, which is an action executed by the Broker, and 
results in replying a list of Agent's partners. The Agent stores the list as a part of its 
context. 

 
introduce(Agent, Broker, Parts) :- 
  Broker * register(Agent, Parts),  % registration is done by a broker 
  assert(partners(Parts)).       % list of partners is stored  

Note that metapredicate assert/1 is used to change the current context of the agent.  
To gain information from any partner an agent has to prepare suitable mapping 

(create_map/2) between schemas. 

create_map(Part, Mpa) :- 
  schema(self, Scha),    % local schema 
  Part * schema(self, Schp),   % partner’s schema is taken   
  map(Scha, Schp, Mpa),   % mapping is constructed  
  assert(mapping(Part, Mpa)).  % mapping is stored  

Querying and answering (ask/3) consists of local (query/2), and collective 
(ask_partners/2) query processing and merging of answers (merge/3).  

ask(Agent, Query, Answer) :- 
  query(Query, Ansl),    % local query is answered  
  ask_partners(Query, Ansr),  % collective query is answered 
  merge(Ansl, Ansr, Answer).  % answers are merged 

To ask a partner an agent has to convert (q_reformulate/3) the original Query to the 
appropriate form Qp, directed to the partner P. 

ask_qparts(_, [ ], _).   % all partners are asked  
ask_qparts(Query, [P|Ps], [A|As]) :- % partner P is asked 
  mapping(P, Mpa), 
  q_reformulate(Qp, Map, Qp1), % query is converted 
  P * ask(Qp1, A),    % query is answered  
  ask_qparts(Query, Ps, As). 
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